These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2816538)

  • 1. Growth of aneurysms can be understood as passive yield to blood pressure. An experimental study.
    Steiger HJ; Aaslid R; Keller S; Reulen HJ
    Acta Neurochir (Wien); 1989; 100(1-2):74-8. PubMed ID: 2816538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength, elasticity and viscoelastic properties of cerebral aneurysms.
    Steiger HJ; Aaslid R; Keller S; Reulen HJ
    Heart Vessels; 1989; 5(1):41-6. PubMed ID: 2584177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are there systemic changes in the arterial biomechanics of intracranial aneurysm patients?
    Tóth M; Nádasy GL; Nyár I; Kerényi T; Monos E
    Pflugers Arch; 2000 Mar; 439(5):573-8. PubMed ID: 10764217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional wall strength in saccular brain aneurysms from polarized light microscopy.
    MacDonald DJ; Finlay HM; Canham PB
    Ann Biomed Eng; 2000 May; 28(5):533-42. PubMed ID: 10925951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled pressure-volume factors in the enlargement of intracranial aneurysms.
    Austin GM; Schievink W; Williams R
    Neurosurgery; 1989 May; 24(5):722-30. PubMed ID: 2716982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nonlinear mathematical model for the development and rupture of intracranial fusiform aneurysms.
    Hademenos GJ; Massoud T; Valentino DJ; Duckwiler G; Viñuela F
    Neurol Res; 1994 Dec; 16(6):433-8. PubMed ID: 7708133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical instability of normal and aneurysmal arteries.
    Lee AY; Sanyal A; Xiao Y; Shadfan R; Han HC
    J Biomech; 2014 Dec; 47(16):3868-3875. PubMed ID: 25458146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms.
    Ma B; Lu J; Harbaugh RE; Raghavan ML
    J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics.
    Burleson AC; Strother CM; Turitto VT
    Neurosurgery; 1995 Oct; 37(4):774-82; discussion 782-4. PubMed ID: 8559308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory tests for strength paramaters of brain aneurysms.
    Tóth BK; Nasztanovics F; Bojtár I
    Acta Bioeng Biomech; 2007; 9(2):3-7. PubMed ID: 18421937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the elastic properties of human intracranial arteries and aneurysms.
    Scott S; Ferguson GG; Roach MR
    Can J Physiol Pharmacol; 1972 Apr; 50(4):328-32. PubMed ID: 5038350
    [No Abstract]   [Full Text] [Related]  

  • 12. Haemodynamic stress in lateral saccular aneurysms. An experimental study.
    Steiger HJ; Poll A; Liepsch D; Reulen HJ
    Acta Neurochir (Wien); 1987; 86(3-4):98-105. PubMed ID: 3630787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-induced wall mechanics of patient-specific aneurysmal cerebral arteries: Nonlinear isotropic versus anisotropic wall stress.
    Cornejo S; Guzmán A; Valencia A; Rodríguez J; Finol E
    Proc Inst Mech Eng H; 2014 Jan; 228(1):37-48. PubMed ID: 24280227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo intraaneurysmal pressure measurements in experimental lateral wall aneurysms before and after onyx embolization.
    Acar F; Men S; Tayfur V; Yilmaz O; Erbayraktar S; Metin Güner E
    Surg Neurol; 2006 Sep; 66(3):252-6; discussion 257. PubMed ID: 16935627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms.
    Robertson AM; Duan X; Aziz KM; Hill MR; Watkins SC; Cebral JR
    Ann Biomed Eng; 2015 Jul; 43(7):1502-15. PubMed ID: 25632891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure changes within the sac of human cerebral aneurysms in response to artificially induced transient increases in systemic blood pressure.
    Hasan DM; Hindman BJ; Todd MM
    Hypertension; 2015 Aug; 66(2):324-31. PubMed ID: 26056344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling intracranial aneurysm stability and growth: an integrative mechanobiological framework for clinical cases.
    Teixeira FS; Neufeld E; Kuster N; Watton PN
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2413-2431. PubMed ID: 32533497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-specific hemodynamics and stress-strain state of cerebral aneurysms.
    Ivanov D; Dol A; Polienko A
    Acta Bioeng Biomech; 2016; 18(2):9-17. PubMed ID: 27406681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project).
    Costalat V; Sanchez M; Ambard D; Thines L; Lonjon N; Nicoud F; Brunel H; Lejeune JP; Dufour H; Bouillot P; Lhaldky JP; Kouri K; Segnarbieux F; Maurage CA; Lobotesis K; Villa-Uriol MC; Zhang C; Frangi AF; Mercier G; Bonafé A; Sarry L; Jourdan F
    J Biomech; 2011 Oct; 44(15):2685-91. PubMed ID: 21924427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the hemodynamics of A1 dysplasia or hypoplasia to anterior communicating artery aneurysms: a 3-dimensional numerical simulation study.
    Xu L; Zhang F; Wang H; Yu Y
    J Comput Assist Tomogr; 2012; 36(4):421-6. PubMed ID: 22805671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.