These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28165416)

  • 81. Non-Contact Detection of Vital Signs Based on Improved Adaptive EEMD Algorithm (July 2022).
    Xu D; Yu W; Deng C; He ZS
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080881
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Non-contact acquisition of respiration and heart rates using Doppler radar with time domain peak-detection algorithm.
    Xiaofeng Yang ; Guanghao Sun ; Ishibashi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2847-2850. PubMed ID: 29060491
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar.
    Shin YH; Seo J
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801867
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Preclinical trial of noncontact anthropometric measurement using IR-UWB radar.
    Kim J; Lee WH; Kim SH; Na JY; Lim YH; Cho SH; Cho SH; Park HK
    Sci Rep; 2022 May; 12(1):8174. PubMed ID: 35581250
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Survey, Analysis and Comparison of Radar Technologies for Embedded Vital Sign Monitoring.
    Giordano M; Islamoglu G; Potocnik V; Vogt C; Magno M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():854-860. PubMed ID: 36085900
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Comprehensive Comparison of Continuous-Wave and Linear-Frequency-Modulated Continuous-Wave Radars for Short-Range Vital Sign Monitoring.
    Antolinos E; Grajal J
    IEEE Trans Biomed Circuits Syst; 2023 Apr; 17(2):229-245. PubMed ID: 37030716
    [TBL] [Abstract][Full Text] [Related]  

  • 87. UWB pulse propagation into human tissues.
    Cavagnaro M; Pittella E; Pisa S
    Phys Med Biol; 2013 Dec; 58(24):8689-707. PubMed ID: 24263560
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Evaluation of Lateral Radar Positioning for Vital Sign Monitoring: An Empirical Study.
    Hornig L; Szmola B; Pätzold W; Vox JP; Wolf KI
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894339
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Vital Signs Identification System With Doppler Radars and Thermal Camera.
    Chian DM; Wen CK; Wang CJ; Hsu MH; Wang FK
    IEEE Trans Biomed Circuits Syst; 2022 Feb; 16(1):153-167. PubMed ID: 35104225
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Few-Shot User-Adaptable Radar-Based Breath Signal Sensing.
    Mauro G; De Carlos Diez M; Ott J; Servadei L; Cuellar MP; Morales-Santos DP
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679598
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Radar-Based, Simultaneous Human Presence Detection and Breathing Rate Estimation.
    Regev N; Wulich D
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069427
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A Real-Time Evaluation Algorithm for Noncontact Heart Rate Variability Monitoring.
    Han X; Zhai Q; Zhang N; Zhang X; He L; Pan M; Zhang B; Liu T
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571465
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Application of empirical mode decomposition in removing fidgeting interference in doppler radar life signs monitoring devices.
    Mostafanezhad I; Boric-Lubecke O; Lubecke V; Mandic DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():340-3. PubMed ID: 19963962
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Enabling Robust Radar-Based Localization and Vital Signs Monitoring in Multipath Propagation Environments.
    Mercuri M; Lu Y; Polito S; Wieringa F; Liu YH; van der Veen AJ; Van Hoof C; Torfs T
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3228-3240. PubMed ID: 33729919
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Non-contact physiological signal detection using continuous wave Doppler radar.
    Qiao D; He T; Hu B; Li Y
    Biomed Mater Eng; 2014; 24(1):993-1000. PubMed ID: 24211989
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Feature Extraction and Reconstruction by Using 2D-VMD Based on Carrier-Free UWB Radar Application in Human Motion Recognition.
    Jiang L; Zhou X; Che L; Rong S; Wen H
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31027374
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Non-contact respiration monitoring using impulse radio ultrawideband radar in neonates.
    Kim JD; Lee WH; Lee Y; Lee HJ; Cha T; Kim SH; Song KM; Lim YH; Cho SH; Cho SH; Park HK
    R Soc Open Sci; 2019 Jun; 6(6):190149. PubMed ID: 31312485
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A Multi-Target Localization and Vital Sign Detection Method Using Ultra-Wide Band Radar.
    Zhang J; Qi Q; Cheng H; Sun L; Liu S; Wang Y; Jia X
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447629
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effects of Receiver Beamforming for Vital Sign Measurements Using FMCW Radar at Various Distances and Angles.
    Ahmed S; Park J; Cho SH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146226
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A Novel Non-contact Heart Rate Monitor Using Impulse-Radio Ultra-Wideband (IR-UWB) Radar Technology.
    Lee Y; Park JY; Choi YW; Park HK; Cho SH; Cho SH; Lim YH
    Sci Rep; 2018 Aug; 8(1):13053. PubMed ID: 30158545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.