These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28165463)
21. The Saccharomyces cerevisiae gene YPR011c encodes a mitochondrial transporter of adenosine 5'-phosphosulfate and 3'-phospho-adenosine 5'-phosphosulfate. Todisco S; Di Noia MA; Castegna A; Lasorsa FM; Paradies E; Palmieri F Biochim Biophys Acta; 2014 Feb; 1837(2):326-34. PubMed ID: 24296033 [TBL] [Abstract][Full Text] [Related]
22. Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae. Regenberg B; Kielland-Brandt MC Yeast; 2001 Nov; 18(15):1429-40. PubMed ID: 11746604 [TBL] [Abstract][Full Text] [Related]
23. Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the alpha-glucoside transporter family. Salema-Oom M; Valadão Pinto V; Gonçalves P; Spencer-Martins I Appl Environ Microbiol; 2005 Sep; 71(9):5044-9. PubMed ID: 16151085 [TBL] [Abstract][Full Text] [Related]
24. Sul1 and Sul2 sulfate transceptors signal to protein kinase A upon exit of sulfur starvation. Kankipati HN; Rubio-Texeira M; Castermans D; Diallinas G; Thevelein JM J Biol Chem; 2015 Apr; 290(16):10430-46. PubMed ID: 25724649 [TBL] [Abstract][Full Text] [Related]
25. Finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and improvement of ethanol production. Funahashi E; Saiki K; Honda K; Sugiura Y; Kawano Y; Ohtsu I; Watanabe D; Wakabayashi Y; Abe T; Nakanishi T; Suematsu M; Takagi H J Biosci Bioeng; 2015 Dec; 120(6):666-9. PubMed ID: 26188417 [TBL] [Abstract][Full Text] [Related]
26. Internalization of Heterologous Sugar Transporters by Endogenous α-Arrestins in the Yeast Saccharomyces cerevisiae. Sen A; Acosta-Sampson L; Alvaro CG; Ahn JS; Cate JH; Thorner J Appl Environ Microbiol; 2016 Dec; 82(24):7074-7085. PubMed ID: 27694235 [TBL] [Abstract][Full Text] [Related]
27. Identification of residues critical for proton-coupled glutathione translocation in the yeast glutathione transporter, Hgt1p. Zulkifli M; Bachhawat AK Biochem J; 2017 May; 474(11):1807-1821. PubMed ID: 28389436 [TBL] [Abstract][Full Text] [Related]
28. Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae. Kaur J; Bachhawat AK Genetics; 2007 Jun; 176(2):877-90. PubMed ID: 17435223 [TBL] [Abstract][Full Text] [Related]
29. Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae. Cai H; Hauser M; Naider F; Becker JM Eukaryot Cell; 2007 Oct; 6(10):1805-13. PubMed ID: 17693598 [TBL] [Abstract][Full Text] [Related]
30. Unravelling glutathione conjugate catabolism in Saccharomyces cerevisiae: the role of glutathione/dipeptide transporters and vacuolar function in the release of volatile sulfur compounds 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one. Cordente AG; Capone DL; Curtin CD Appl Microbiol Biotechnol; 2015 Nov; 99(22):9709-22. PubMed ID: 26227410 [TBL] [Abstract][Full Text] [Related]
31. Improved Xylose Metabolism by a Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963 [TBL] [Abstract][Full Text] [Related]
32. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Makuc J; Paiva S; Schauen M; Krämer R; André B; Casal M; Leão C; Boles E Yeast; 2001 Sep; 18(12):1131-43. PubMed ID: 11536335 [TBL] [Abstract][Full Text] [Related]
33. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose. Knoshaug EP; Vidgren V; Magalhães F; Jarvis EE; Franden MA; Zhang M; Singh A Yeast; 2015 Oct; 32(10):615-28. PubMed ID: 26129747 [TBL] [Abstract][Full Text] [Related]
34. Acr3p is a plasma membrane antiporter that catalyzes As(III)/H(+) and Sb(III)/H(+) exchange in Saccharomyces cerevisiae. Maciaszczyk-Dziubinska E; Migocka M; Wysocki R Biochim Biophys Acta; 2011 Jul; 1808(7):1855-9. PubMed ID: 21447319 [TBL] [Abstract][Full Text] [Related]
35. Complementation of the Yeast Model System Reveals that Caenorhabditis elegans OCT-1 Is a Functional Transporter of Anthracyclines. Brosseau N; Andreev E; Ramotar D PLoS One; 2015; 10(7):e0133182. PubMed ID: 26177450 [TBL] [Abstract][Full Text] [Related]
36. Structural basis of nucleotide sugar transport across the Golgi membrane. Parker JL; Newstead S Nature; 2017 Nov; 551(7681):521-524. PubMed ID: 29143814 [TBL] [Abstract][Full Text] [Related]
37. GGA2- and ubiquitin-dependent trafficking of Arn1, the ferrichrome transporter of Saccharomyces cerevisiae. Kim Y; Deng Y; Philpott CC Mol Biol Cell; 2007 May; 18(5):1790-802. PubMed ID: 17344478 [TBL] [Abstract][Full Text] [Related]
38. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. Qu N; He XP; Guo XN; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462 [TBL] [Abstract][Full Text] [Related]
39. Tum1 is involved in the metabolism of sterol esters in Saccharomyces cerevisiae. Uršič K; Ogrizović M; Kordiš D; Natter K; Petrovič U BMC Microbiol; 2017 Aug; 17(1):181. PubMed ID: 28830344 [TBL] [Abstract][Full Text] [Related]
40. Phylogenetic classification of transporters and other membrane proteins from Saccharomyces cerevisiae. De Hertogh B; Carvajal E; Talla E; Dujon B; Baret P; Goffeau A Funct Integr Genomics; 2002 Sep; 2(4-5):154-70. PubMed ID: 12192589 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]