These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 28165513)

  • 1. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon.
    Li MS; Wang R; Fu Kuo DT; Shih YH
    Environ Sci Process Impacts; 2017 Mar; 19(3):276-287. PubMed ID: 28165513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of sorption mechanisms of VOCs with organobentonites using a LSER approach.
    Tian S; Zhu L; Shi Y
    Environ Sci Technol; 2004 Jan; 38(2):489-95. PubMed ID: 14750724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting adsorption coefficients of VOCs using polyparameter linear free energy relationship based on the evaluation of dispersive and specific interactions.
    Liu H; Wei K; Yu Y; Long C
    Environ Pollut; 2019 Dec; 255(Pt 1):113224. PubMed ID: 31541807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of volatile organic compound adsorption on multiwall carbon nanotubes under different levels of relative humidity using linear solvation energy relationship.
    Li MS; Wu SC; Shih YH
    J Hazard Mater; 2016 Sep; 315():35-41. PubMed ID: 27152974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon.
    Yu X; Sun W; Ni J
    Environ Pollut; 2015 Nov; 206():652-60. PubMed ID: 26319510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms.
    Zhang X; Gao B; Zheng Y; Hu X; Creamer AE; Annable MD; Li Y
    Bioresour Technol; 2017 Dec; 245(Pt A):606-614. PubMed ID: 28910648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of surface oxidation of multiwalled carbon nanotubes on the adsorption affinity and capacity of polar and nonpolar organic compounds in aqueous phase.
    Wu W; Chen W; Lin D; Yang K
    Environ Sci Technol; 2012 May; 46(10):5446-54. PubMed ID: 22524230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel adsorbent based on multi-walled carbon nanotubes bonding on the external surface of porous silica gel particulates for trapping volatile organic compounds.
    Wang L; Liu J; Zhao P; Ning Z; Fan H
    J Chromatogr A; 2010 Sep; 1217(37):5741-5. PubMed ID: 20692664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs).
    Zhang X; Gao B; Fang J; Zou W; Dong L; Cao C; Zhang J; Li Y; Wang H
    Chemosphere; 2019 Mar; 218():680-686. PubMed ID: 30504043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of VOCs onto engineered carbon materials: A review.
    Zhang X; Gao B; Creamer AE; Cao C; Li Y
    J Hazard Mater; 2017 Sep; 338():102-123. PubMed ID: 28535479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of activated carbon with different pore sizes and functional groups for VOC adsorption by molecular simulation.
    An Y; Fu Q; Zhang D; Wang Y; Tang Z
    Chemosphere; 2019 Jul; 227():9-16. PubMed ID: 30981100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-mechanical LSERs for the concentration-dependent adsorption of aromatic organic compounds by activated carbon: Applications and comparison with carbon nanotubes.
    Lata S; Vikas
    SAR QSAR Environ Res; 2019 Feb; 30(2):109-130. PubMed ID: 30727761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of sorption of aromatic and aliphatic organic compounds by carbon nanotubes using poly-parameter linear free-energy relationships.
    Hüffer T; Endo S; Metzelder F; Schroth S; Schmidt TC
    Water Res; 2014 Aug; 59():295-303. PubMed ID: 24813337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon.
    Lu C; Liu C; Rao GP
    J Hazard Mater; 2008 Feb; 151(1):239-46. PubMed ID: 17618049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance.
    Huang CY; Song M; Gu ZY; Wang HF; Yan XP
    Environ Sci Technol; 2011 May; 45(10):4490-6. PubMed ID: 21500773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the Effect of Relative Humidity on Adsorption Dynamics of Volatile Organic Compound onto Activated Carbon.
    Laskar II; Hashisho Z; Phillips JH; Anderson JE; Nichols M
    Environ Sci Technol; 2019 Mar; 53(5):2647-2659. PubMed ID: 30730707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H2O2-based oxidation processes for the regeneration of activated carbons saturated with volatile organic compounds of different polarity.
    Anfruns A; Montes-Morán MA; Gonzalez-Olmos R; Martin MJ
    Chemosphere; 2013 Mar; 91(1):48-54. PubMed ID: 23273734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH).
    Qu F; Zhu L; Yang K
    J Hazard Mater; 2009 Oct; 170(1):7-12. PubMed ID: 19505753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Toxicol Chem; 2012 Jan; 31(1):79-85. PubMed ID: 22021047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.