These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28165521)

  • 1. High-selectivity cytology via lab-on-a-disc western blotting of individual cells.
    Kim JJ; Sinkala E; Herr AE
    Lab Chip; 2017 Feb; 17(5):855-863. PubMed ID: 28165521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Western Blotting.
    Sinkala E; Herr AE
    Methods Mol Biol; 2015; 1346():1-9. PubMed ID: 26542711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single cell-resolution western blotting.
    Kang CC; Yamauchi KA; Vlassakis J; Sinkala E; Duncombe TA; Herr AE
    Nat Protoc; 2016 Aug; 11(8):1508-30. PubMed ID: 27466711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell Western blotting after whole-cell imaging to assess cancer chemotherapeutic response.
    Kang CC; Lin JM; Xu Z; Kumar S; Herr AE
    Anal Chem; 2014 Oct; 86(20):10429-36. PubMed ID: 25226230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-volume centrifugal microfluidic device for blood plasma separation.
    Amasia M; Madou M
    Bioanalysis; 2010 Oct; 2(10):1701-10. PubMed ID: 21083322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microparticle Delivery of Protein Markers for Single-Cell Western Blotting from Microwells.
    Kim JJ; Chan PPY; Vlassakis J; Geldert A; Herr AE
    Small; 2018 Nov; 14(48):e1802865. PubMed ID: 30334351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform.
    Nwankire CE; Venkatanarayanan A; Glennon T; Keyes TE; Forster RJ; Ducrée J
    Biosens Bioelectron; 2015 Jun; 68():382-389. PubMed ID: 25613813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroactive microwell arrays for highly efficient single-cell trapping and analysis.
    Kim SH; Yamamoto T; Fourmy D; Fujii T
    Small; 2011 Nov; 7(22):3239-47. PubMed ID: 21932278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms.
    Kinahan DJ; Kearney SM; Dimov N; Glynn MT; Ducrée J
    Lab Chip; 2014 Jul; 14(13):2249-58. PubMed ID: 24811251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device.
    Chen Q; Wu J; Zhang Y; Lin Z; Lin JM
    Lab Chip; 2012 Dec; 12(24):5180-5. PubMed ID: 23108418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell chemical lysis on microfluidic chips with arrays of microwells.
    Jen CP; Hsiao JH; Maslov NA
    Sensors (Basel); 2012; 12(1):347-58. PubMed ID: 22368473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrifugal microfluidic platform for single-cell level cardiomyocyte-based drug profiling and screening.
    Espulgar W; Aoki W; Ikeuchi T; Mita D; Saito M; Lee JK; Tamiya E
    Lab Chip; 2015 Sep; 15(17):3572-80. PubMed ID: 26215661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centrifugation-Assisted Single-Cell Trapping in a Truncated Cone-Shaped Microwell Array Chip for the Real-Time Observation of Cellular Apoptosis.
    Huang L; Chen Y; Chen Y; Wu H
    Anal Chem; 2015 Dec; 87(24):12169-76. PubMed ID: 26579559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform.
    Abi-Samra K; Hanson R; Madou M; Gorkin RA
    Lab Chip; 2011 Feb; 11(4):723-6. PubMed ID: 21103528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centrifugal microfluidics for biomedical applications.
    Gorkin R; Park J; Siegrist J; Amasia M; Lee BS; Park JM; Kim J; Kim H; Madou M; Cho YK
    Lab Chip; 2010 Jul; 10(14):1758-73. PubMed ID: 20512178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC; Hur JY; Cho HS; Park SH; Suh KY
    Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugal microfluidics for cell analysis.
    Burger R; Kirby D; Glynn M; Nwankire C; O'Sullivan M; Siegrist J; Kinahan D; Aguirre G; Kijanka G; Gorkin RA; Ducrée J
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):409-14. PubMed ID: 22784388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM; Kemna EW; Wolbers F; van den Berg A
    Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joule Heating-Induced Dispersion in Open Microfluidic Electrophoretic Cytometry.
    Vlassakis J; Herr AE
    Anal Chem; 2017 Dec; 89(23):12787-12796. PubMed ID: 29110464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniaturized Lab-on-a-Disc (miniLOAD).
    Glass NR; Shilton RJ; Chan PP; Friend JR; Yeo LY
    Small; 2012 Jun; 8(12):1881-8. PubMed ID: 22488691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.