These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 28165734)

  • 1. Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS.
    Capuzzi SJ; Muratov EN; Tropsha A
    J Chem Inf Model; 2017 Mar; 57(3):417-427. PubMed ID: 28165734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Activity Profiles of PAINS and Their Structural Context in Target-Ligand Complexes.
    Siramshetty VB; Preissner R; Gohlke BO
    J Chem Inf Model; 2018 Sep; 58(9):1847-1857. PubMed ID: 30105913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Behavior of Published PAINS Alerts Using a Pharmaceutical Company Data Set.
    Vidler LR; Watson IA; Margolis BJ; Cummins DJ; Brunavs M
    ACS Med Chem Lett; 2018 Aug; 9(8):792-796. PubMed ID: 30128069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking the mechanisms of frequent hitters: limitation of PAINS alerts.
    Yang ZY; Yang ZJ; He JH; Lu AP; Liu S; Hou TJ; Cao DS
    Drug Discov Today; 2021 Jun; 26(6):1353-1358. PubMed ID: 33581116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Frequently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit Frequency, and Many Consistently Inactive Compounds.
    Jasial S; Hu Y; Bajorath J
    J Med Chem; 2017 May; 60(9):3879-3886. PubMed ID: 28421750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Small-Molecule Reactivity Identifies Promiscuous Bioactive Compounds.
    Matlock MK; Hughes TB; Dahlin JL; Swamidass SJ
    J Chem Inf Model; 2018 Aug; 58(8):1483-1500. PubMed ID: 29990427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.
    Baell JB; Holloway GA
    J Med Chem; 2010 Apr; 53(7):2719-40. PubMed ID: 20131845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Small-Molecule Frequent Hitters from AlphaScreen High-Throughput Screens.
    Schorpp K; Rothenaigner I; Salmina E; Reinshagen J; Low T; Brenke JK; Gopalakrishnan J; Tetko IV; Gul S; Hadian K
    J Biomol Screen; 2014 Jun; 19(5):715-26. PubMed ID: 24371213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Promiscuous Small Molecules from Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology.
    Gilberg E; Jasial S; Stumpfe D; Dimova D; Bajorath J
    J Med Chem; 2016 Nov; 59(22):10285-10290. PubMed ID: 27809519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection.
    Chakravorty SJ; Chan J; Greenwood MN; Popa-Burke I; Remlinger KS; Pickett SD; Green DVS; Fillmore MC; Dean TW; Luengo JI; Macarrón R
    SLAS Discov; 2018 Jul; 23(6):532-545. PubMed ID: 29699447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoting GAINs (Give Attention to Limitations in Assays) over PAINs Alerts: no PAINS, more GAINs.
    Choo MZY; Chai CLL
    ChemMedChem; 2022 Apr; 17(7):e202100710. PubMed ID: 35146933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.
    Jasial S; Gilberg E; Blaschke T; Bajorath J
    J Med Chem; 2018 Nov; 61(22):10255-10264. PubMed ID: 30422657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drugs as habitable planets in the space of dark chemical matter.
    Siramshetty VB; Preissner R
    Drug Discov Today; 2018 Mar; 23(3):481-486. PubMed ID: 28709991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray Structures of Target-Ligand Complexes Containing Compounds with Assay Interference Potential.
    Gilberg E; Gütschow M; Bajorath J
    J Med Chem; 2018 Feb; 61(3):1276-1284. PubMed ID: 29328660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to Triage PAINS-Full Research.
    Dahlin JL; Walters MA
    Assay Drug Dev Technol; 2016 Apr; 14(3):168-74. PubMed ID: 26496388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale bioactivity analysis of the small-molecule assayed proteome.
    Backman TW; Evans DS; Girke T
    PLoS One; 2017; 12(2):e0171413. PubMed ID: 28178331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locating sweet spots for screening hits and evaluating pan-assay interference filters from the performance analysis of two lead-like libraries.
    Mok NY; Maxe S; Brenk R
    J Chem Inf Model; 2013 Mar; 53(3):534-44. PubMed ID: 23451880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feeling Nature's PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS).
    Baell JB
    J Nat Prod; 2016 Mar; 79(3):616-28. PubMed ID: 26900761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.