These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 28165880)
1. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing. Ivask A; Scheckel KG; Kapruwan P; Stone V; Yin H; Voelcker NH; Lombi E Nanotoxicology; 2017 Mar; 11(2):150-156. PubMed ID: 28165880 [TBL] [Abstract][Full Text] [Related]
2. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Heinlaan M; Ivask A; Blinova I; Dubourguier HC; Kahru A Chemosphere; 2008 Apr; 71(7):1308-16. PubMed ID: 18194809 [TBL] [Abstract][Full Text] [Related]
3. Fate of CuO and ZnO nano- and microparticles in the plant environment. Dimkpa CO; Latta DE; McLean JE; Britt DW; Boyanov MI; Anderson AJ Environ Sci Technol; 2013 May; 47(9):4734-42. PubMed ID: 23540424 [TBL] [Abstract][Full Text] [Related]
4. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Mortimer M; Kasemets K; Kahru A Toxicology; 2010 Mar; 269(2-3):182-9. PubMed ID: 19622384 [TBL] [Abstract][Full Text] [Related]
5. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Aruoja V; Dubourguier HC; Kasemets K; Kahru A Sci Total Environ; 2009 Feb; 407(4):1461-8. PubMed ID: 19038417 [TBL] [Abstract][Full Text] [Related]
6. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Kasemets K; Ivask A; Dubourguier HC; Kahru A Toxicol In Vitro; 2009 Sep; 23(6):1116-22. PubMed ID: 19486936 [TBL] [Abstract][Full Text] [Related]
7. Formation of zinc-containing nanoparticles from Zn²⁺ ions in cell culture media: implications for the nanotoxicology of ZnO. Turney TW; Duriska MB; Jayaratne V; Elbaz A; O'Keefe SJ; Hastings AS; Piva TJ; Wright PF; Feltis BN Chem Res Toxicol; 2012 Oct; 25(10):2057-66. PubMed ID: 22978249 [TBL] [Abstract][Full Text] [Related]
8. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Blinova I; Ivask A; Heinlaan M; Mortimer M; Kahru A Environ Pollut; 2010 Jan; 158(1):41-7. PubMed ID: 19800155 [TBL] [Abstract][Full Text] [Related]
9. Testing nanoeffect onto model bacteria: Impact of speciation and genotypes. Gelabert A; Sivry Y; Gobbi P; Mansouri-Guilani N; Menguy N; Brayner R; Siron V; Benedetti MF; Ferrari R Nanotoxicology; 2016; 10(2):216-25. PubMed ID: 26593393 [TBL] [Abstract][Full Text] [Related]
10. Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. Luna-delRisco M; Orupõld K; Dubourguier HC J Hazard Mater; 2011 May; 189(1-2):603-8. PubMed ID: 21435778 [TBL] [Abstract][Full Text] [Related]
11. Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of Raphanus sativus seeds. Singh D; Kumar A Environ Monit Assess; 2019 Oct; 191(11):703. PubMed ID: 31673860 [TBL] [Abstract][Full Text] [Related]
12. The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn. Chen X; O'Halloran J; Jansen MA Aquat Toxicol; 2016 May; 174():46-53. PubMed ID: 26918949 [TBL] [Abstract][Full Text] [Related]
13. The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. Adam N; Leroux F; Knapen D; Bals S; Blust R Water Res; 2015 Jan; 68():249-61. PubMed ID: 25462733 [TBL] [Abstract][Full Text] [Related]
14. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. Adam N; Vergauwen L; Blust R; Knapen D Environ Res; 2015 Apr; 138():82-92. PubMed ID: 25704829 [TBL] [Abstract][Full Text] [Related]
15. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Karlsson HL; Cronholm P; Gustafsson J; Möller L Chem Res Toxicol; 2008 Sep; 21(9):1726-32. PubMed ID: 18710264 [TBL] [Abstract][Full Text] [Related]
16. Integrative chemical, physiological, and metabolomics analyses reveal nanospecific phytotoxicity of metal nanoparticles. Wu P; Wang Z; Adusei-Fosu K; Wang Y; Wang H; Li X J Environ Manage; 2024 Mar; 354():120338. PubMed ID: 38401494 [TBL] [Abstract][Full Text] [Related]
17. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Lv J; Zhang S; Luo L; Han W; Zhang J; Yang K; Christie P Environ Sci Technol; 2012 Jul; 46(13):7215-21. PubMed ID: 22651907 [TBL] [Abstract][Full Text] [Related]
18. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Ivask A; Bondarenko O; Jepihhina N; Kahru A Anal Bioanal Chem; 2010 Sep; 398(2):701-16. PubMed ID: 20623373 [TBL] [Abstract][Full Text] [Related]
19. Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles. Adam N; Schmitt C; De Bruyn L; Knapen D; Blust R Sci Total Environ; 2015 Sep; 526():233-42. PubMed ID: 25933293 [TBL] [Abstract][Full Text] [Related]
20. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Mwaanga P; Carraway ER; van den Hurk P Aquat Toxicol; 2014 May; 150():201-9. PubMed ID: 24699179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]