BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28165915)

  • 1. Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples.
    Zhang YF; Ho M
    MAbs; 2017 Apr; 9(3):419-429. PubMed ID: 28165915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibody humanization by redesign of complementarity-determining region residues proximate to the acceptor framework.
    Hanf KJ; Arndt JW; Chen LL; Jarpe M; Boriack-Sjodin PA; Li Y; van Vlijmen HW; Pepinsky RB; Simon KJ; Lugovskoy A
    Methods; 2014 Jan; 65(1):68-76. PubMed ID: 23816785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Generation of Humanized Single-chain Fv Derived from Mouse Hybridoma for Potential Targeting Application.
    Khantasup K; Chantima W; Sangma C; Poomputsa K; Dharakul T
    Monoclon Antib Immunodiagn Immunother; 2015 Dec; 34(6):404-17. PubMed ID: 26683180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generic approach for the generation of stable humanized single-chain Fv fragments from rabbit monoclonal antibodies.
    Borras L; Gunde T; Tietz J; Bauer U; Hulmann-Cottier V; Grimshaw JP; Urech DM
    J Biol Chem; 2010 Mar; 285(12):9054-66. PubMed ID: 20056614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into humanization of anti-tissue factor antibody 10H10.
    Teplyakov A; Obmolova G; Malia TJ; Raghunathan G; Martinez C; Fransson J; Edwards W; Connor J; Husovsky M; Beck H; Chi E; Fenton S; Zhou H; Almagro JC; Gilliland GL
    MAbs; 2018; 10(2):269-277. PubMed ID: 29283291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues.
    Wu H; Nie Y; Huse WD; Watkins JD
    J Mol Biol; 1999 Nov; 294(1):151-62. PubMed ID: 10556035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SDR grafting--a new approach to antibody humanization.
    Kashmiri SV; De Pascalis R; Gonzales NR; Schlom J
    Methods; 2005 May; 36(1):25-34. PubMed ID: 15848072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody humanization methods - a review and update.
    Safdari Y; Farajnia S; Asgharzadeh M; Khalili M
    Biotechnol Genet Eng Rev; 2013; 29():175-86. PubMed ID: 24568279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VH-VL orientation prediction for antibody humanization candidate selection: A case study.
    Bujotzek A; Lipsmeier F; Harris SF; Benz J; Kuglstatter A; Georges G
    MAbs; 2016; 8(2):288-305. PubMed ID: 26637054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of human germline genes in a CDR homology-based approach to antibody humanization.
    Hwang WY; Almagro JC; Buss TN; Tan P; Foote J
    Methods; 2005 May; 36(1):35-42. PubMed ID: 15848073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody Design and Humanization via In Silico Modeling.
    Kurella VB; Gali R
    Methods Mol Biol; 2018; 1827():3-14. PubMed ID: 30196489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grafting of "abbreviated" complementarity-determining regions containing specificity-determining residues essential for ligand contact to engineer a less immunogenic humanized monoclonal antibody.
    De Pascalis R; Iwahashi M; Tamura M; Padlan EA; Gonzales NR; Santos AD; Giuliano M; Schuck P; Schlom J; Kashmiri SV
    J Immunol; 2002 Sep; 169(6):3076-84. PubMed ID: 12218124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Humanization of a phosphothreonine peptide-specific chicken antibody by combinatorial library optimization of the phosphoepitope-binding motif.
    Baek DS; Kim YS
    Biochem Biophys Res Commun; 2015 Jul; 463(3):414-20. PubMed ID: 26036575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Humanization by CDR grafting and specificity-determining residue grafting.
    Kim JH; Hong HJ
    Methods Mol Biol; 2012; 907():237-45. PubMed ID: 22907355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibody humanization by structure-based computational protein design.
    Choi Y; Hua C; Sentman CL; Ackerman ME; Bailey-Kellogg C
    MAbs; 2015; 7(6):1045-57. PubMed ID: 26252731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody.
    Apgar JR; Mader M; Agostinelli R; Benard S; Bialek P; Johnson M; Gao Y; Krebs M; Owens J; Parris K; St Andre M; Svenson K; Morris C; Tchistiakova L
    MAbs; 2016 Oct; 8(7):1302-1318. PubMed ID: 27625211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody Fragments Humanization: Beginning with the End in Mind.
    Aubrey N; Billiald P
    Methods Mol Biol; 2019; 1904():231-252. PubMed ID: 30539473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma.
    Zhang YF; Ho M
    Sci Rep; 2016 Sep; 6():33878. PubMed ID: 27667400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humanization of an anti-CD34 monoclonal antibody by complementarity-determining region grafting based on computer-assisted molecular modelling.
    Hou S; Li B; Wang L; Qian W; Zhang D; Hong X; Wang H; Guo Y
    J Biochem; 2008 Jul; 144(1):115-20. PubMed ID: 18424812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humanization of the Shark V
    Zhang YF; Sun Y; Hong J; Ho M
    Curr Protoc; 2023 Jan; 3(1):e630. PubMed ID: 36594750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.