These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 28166227)

  • 41. Comparative study of the effectiveness and limitations of current methods for detecting sequence coevolution.
    Mao W; Kaya C; Dutta A; Horovitz A; Bahar I
    Bioinformatics; 2015 Jun; 31(12):1929-37. PubMed ID: 25697822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments.
    Jones DT; Buchan DW; Cozzetto D; Pontil M
    Bioinformatics; 2012 Jan; 28(2):184-90. PubMed ID: 22101153
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shape complementarity of protein-protein complexes at multiple resolutions.
    Zhang Q; Sanner M; Olson AJ
    Proteins; 2009 May; 75(2):453-67. PubMed ID: 18837463
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection and sequence/structure mapping of biophysical constraints to protein variation in saturated mutational libraries and protein sequence alignments with a dedicated server.
    Abriata LA; Bovigny C; Dal Peraro M
    BMC Bioinformatics; 2016 Jun; 17(1):242. PubMed ID: 27315797
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oligomerisation status and evolutionary conservation of interfaces of protein structural domain superfamilies.
    Sukhwal A; Sowdhamini R
    Mol Biosyst; 2013 Jul; 9(7):1652-61. PubMed ID: 23532342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved structure-related prediction for insufficient homologous proteins using MSA enhancement and pre-trained language model.
    Meng Q; Guo F; Tang J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37321965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information.
    An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF
    Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploiting three kinds of interface propensities to identify protein binding sites.
    Liu B; Wang X; Lin L; Dong Q; Wang X
    Comput Biol Chem; 2009 Aug; 33(4):303-11. PubMed ID: 19646926
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An introduction to protein contact prediction.
    Hamilton N; Huber T
    Methods Mol Biol; 2008; 453():87-104. PubMed ID: 18712298
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis and prediction of functional sub-types from protein sequence alignments.
    Hannenhalli SS; Russell RB
    J Mol Biol; 2000 Oct; 303(1):61-76. PubMed ID: 11021970
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How proteins get in touch: interface prediction in the study of biomolecular complexes.
    de Vries SJ; Bonvin AM
    Curr Protein Pept Sci; 2008 Aug; 9(4):394-406. PubMed ID: 18691126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Equivalent binding sites reveal convergently evolved interaction motifs.
    Henschel A; Kim WK; Schroeder M
    Bioinformatics; 2006 Mar; 22(5):550-5. PubMed ID: 16287935
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A quantitative analysis of interfacial amino acid conservation in protein-protein hetero complexes.
    Reddy BV; Kaznessis YN
    J Bioinform Comput Biol; 2005 Oct; 3(5):1137-50. PubMed ID: 16278951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ranking multiple docking solutions based on the conservation of inter-residue contacts.
    Oliva R; Vangone A; Cavallo L
    Proteins; 2013 Sep; 81(9):1571-84. PubMed ID: 23609916
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Novel Index of Contact Frequency from Noise Protein-Protein Interaction Data Help for Accurate Interface Residue Pair Prediction.
    Lyu Y; Huang H; Gong X
    Interdiscip Sci; 2020 Jun; 12(2):204-216. PubMed ID: 32185690
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accuracy of protein-protein binding sites in high-throughput template-based modeling.
    Kundrotas PJ; Vakser IA
    PLoS Comput Biol; 2010 Apr; 6(4):e1000727. PubMed ID: 20369011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction.
    Dunn SD; Wahl LM; Gloor GB
    Bioinformatics; 2008 Feb; 24(3):333-40. PubMed ID: 18057019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploiting the co-evolution of interacting proteins to discover interaction specificity.
    Ramani AK; Marcotte EM
    J Mol Biol; 2003 Mar; 327(1):273-84. PubMed ID: 12614624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.