BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

764 related articles for article (PubMed ID: 28166402)

  • 1. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.
    Dong C; Xu L
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7160-7168. PubMed ID: 28166402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ self-assembled hollow urchins F-Co-MOF on rGO as advanced anodes for lithium-ion and sodium-ion batteries.
    Wei R; Dong Y; Zhang Y; Zhang R; Al-Tahan MA; Zhang J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):236-245. PubMed ID: 32823125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced electrochemical performance of Li-Co-BTC ternary metal-organic frameworks as cathode materials for lithium-ion batteries.
    Du ZQ; Li YP; Wang XX; Wang J; Zhai QG
    Dalton Trans; 2019 Feb; 48(6):2013-2018. PubMed ID: 30667015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage.
    Tian B; Ning GH; Gao Q; Tan LM; Tang W; Chen Z; Su C; Loh KP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31067-31075. PubMed ID: 27786456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coated/Sandwiched rGO/CoSx Composites Derived from Metal-Organic Frameworks/GO as Advanced Anode Materials for Lithium-Ion Batteries.
    Yin D; Huang G; Zhang F; Qin Y; Na Z; Wu Y; Wang L
    Chemistry; 2016 Jan; 22(4):1467-74. PubMed ID: 26748911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrathiafulvalene-Cobalt Metal-Organic Frameworks for Lithium-Ion Batteries with Superb Rate Capability.
    Weng YG; Ren ZH; Zhang ZR; Shao J; Zhu QY; Dai J
    Inorg Chem; 2021 Nov; 60(22):17074-17082. PubMed ID: 34702033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Organic Framework Glass Anode with an Exceptional Cycling-Induced Capacity Enhancement for Lithium-Ion Batteries.
    Gao C; Jiang Z; Qi S; Wang P; Jensen LR; Johansen M; Christensen CK; Zhang Y; Ravnsbaek DB; Yue Y
    Adv Mater; 2022 Mar; 34(10):e2110048. PubMed ID: 34969158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Cobalt-Based Metal-Organic Framework for High-Performance Lithium-Ion Batteries.
    Chen L; Yang W; Wang J; Chen C; Wei M
    Chemistry; 2018 Sep; 24(50):13362-13367. PubMed ID: 29957831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MOF-Derived ZnO/Ni3ZnC0.7/C Hybrids Yolk-Shell Microspheres with Excellent Electrochemical Performances for Lithium Ion Batteries.
    Zhao Y; Li X; Liu J; Wang C; Zhao Y; Yue G
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6472-80. PubMed ID: 26895382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafine Co
    Dong C; Guo L; He Y; Shang L; Qian Y; Xu L
    Nanoscale; 2018 Feb; 10(6):2804-2811. PubMed ID: 29359772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Organic Frameworks Derived Okra-like SnO
    Zhou X; Chen S; Yang J; Bai T; Ren Y; Tian H
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14309-14318. PubMed ID: 28394558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology-dependent electrochemical performance of Ni-1,3,5-benzenetricarboxylate metal-organic frameworks as an anode material for Li-ion batteries.
    Gan Q; He H; Zhao K; He Z; Liu S
    J Colloid Interface Sci; 2018 Nov; 530():127-136. PubMed ID: 29966845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetrathiafulvalene-Based Metal-Organic Framework as a High-Performance Anode for Lithium-Ion Batteries.
    Weng YG; Yin WY; Jiang M; Hou JL; Shao J; Zhu QY; Dai J
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52615-52623. PubMed ID: 33170613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries.
    Chen C; Wu M; Xu Z; Feng T; Yang J; Chen Z; Wang S; Wang Y
    J Colloid Interface Sci; 2019 Mar; 538():267-276. PubMed ID: 30513468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries.
    Sui ZY; Zhang PY; Xu MY; Liu YW; Wei ZX; Han BH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43171-43178. PubMed ID: 29148701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries.
    Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q
    Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous CuO/reduced graphene oxide composites synthesized from metal-organic frameworks as anodes for high-performance sodium-ion batteries.
    Li D; Yan D; Zhang X; Li J; Lu T; Pan L
    J Colloid Interface Sci; 2017 Jul; 497():350-358. PubMed ID: 28301830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyoxometalate-Incorporated Metallapillararene/Metallacalixarene Metal-Organic Frameworks as Anode Materials for Lithium Ion Batteries.
    Yang XY; Wei T; Li JS; Sheng N; Zhu PP; Sha JQ; Wang T; Lan YQ
    Inorg Chem; 2017 Jul; 56(14):8311-8318. PubMed ID: 28648059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ growth of MOFs on the surface of si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries.
    Han Y; Qi P; Feng X; Li S; Fu X; Li H; Chen Y; Zhou J; Li X; Wang B
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2178-82. PubMed ID: 25574972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.