These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28166716)

  • 21. CollapsABEL: an R library for detecting compound heterozygote alleles in genome-wide association studies.
    Zhong K; Karssen LC; Kayser M; Liu F
    BMC Bioinformatics; 2016 Apr; 17():156. PubMed ID: 27059780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HLAscan: genotyping of the HLA region using next-generation sequencing data.
    Ka S; Lee S; Hong J; Cho Y; Sung J; Kim HN; Kim HL; Jung J
    BMC Bioinformatics; 2017 May; 18(1):258. PubMed ID: 28499414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AmpliSAS and AmpliHLA: Web Server Tools for MHC Typing of Non-Model Species and Human Using NGS Data.
    Sebastian A; Migalska M; Biedrzycka A
    Methods Mol Biol; 2018; 1802():249-273. PubMed ID: 29858815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HLA-VBSeq: accurate HLA typing at full resolution from whole-genome sequencing data.
    Nariai N; Kojima K; Saito S; Mimori T; Sato Y; Kawai Y; Yamaguchi-Kabata Y; Yasuda J; Nagasaki M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S7. PubMed ID: 25708870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Definition Genomic Analysis of HLA Genes Via Comprehensive HLA Allele Genotyping.
    Kawaguchi S; Matsuda F
    Methods Mol Biol; 2020; 2131():31-38. PubMed ID: 32162249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. REHUNT: a reliable and open source package for restriction enzyme hunting.
    Cheng YH; Liaw JJ; Kuo CN
    BMC Bioinformatics; 2018 Aug; 19(1):178. PubMed ID: 30092755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic comparative study of computational methods for HLA typing from next-generation sequencing.
    Yu Y; Wang K; Fahira A; Yang Q; Sun R; Li Z; Wang Z; Shi Y
    HLA; 2021 Jun; 97(6):481-492. PubMed ID: 33655664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for a higher resolution of HLA genotyping by a new NGS-based approach.
    Alizadeh M; Walencik A; Frassati C; Moskovtchenko P; Lafarge X; Verite F; Semana G
    Transfus Clin Biol; 2017 Sep; 24(3):120-123. PubMed ID: 28629606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tutorial: a statistical genetics guide to identifying HLA alleles driving complex disease.
    Sakaue S; Gurajala S; Curtis M; Luo Y; Choi W; Ishigaki K; Kang JB; Rumker L; Deutsch AJ; Schönherr S; Forer L; LeFaive J; Fuchsberger C; Han B; Lenz TL; de Bakker PIW; Okada Y; Smith AV; Raychaudhuri S
    Nat Protoc; 2023 Sep; 18(9):2625-2641. PubMed ID: 37495751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a high-resolution NGS-based HLA-typing and analysis pipeline.
    Wittig M; Anmarkrud JA; Kässens JC; Koch S; Forster M; Ellinghaus E; Hov JR; Sauer S; Schimmler M; Ziemann M; Görg S; Jacob F; Karlsen TH; Franke A
    Nucleic Acids Res; 2015 Jun; 43(11):e70. PubMed ID: 25753671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment Samples.
    Yin Y; Lan JH; Nguyen D; Valenzuela N; Takemura P; Bolon YT; Springer B; Saito K; Zheng Y; Hague T; Pasztor A; Horvath G; Rigo K; Reed EF; Zhang Q
    PLoS One; 2016; 11(10):e0165810. PubMed ID: 27798706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning-Based HLA Allele Imputation Applicable to GWAS.
    Naito T
    Methods Mol Biol; 2024; 2809():77-85. PubMed ID: 38907891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HLA-genotyping of clinical specimens using Ion Torrent-based NGS.
    Barone JC; Saito K; Beutner K; Campo M; Dong W; Goswami CP; Johnson ES; Wang ZX; Hsu S
    Hum Immunol; 2015 Dec; 76(12):903-9. PubMed ID: 26423535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development.
    Lv Y; Liu Y; Zhao H
    BMC Genomics; 2016 Apr; 17():290. PubMed ID: 27079510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HLA imputation in an admixed population: An assessment of the 1000 Genomes data as a training set.
    Nunes K; Zheng X; Torres M; Moraes ME; Piovezan BZ; Pontes GN; Kimura L; Carnavalli JEP; Mingroni Netto RC; Meyer D
    Hum Immunol; 2016 Mar; 77(3):307-312. PubMed ID: 26582005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of novel HLA alleles: Utility of next-generation sequencing methods.
    Brown NK; Kheradmand T; Wang J; Marino SR
    Hum Immunol; 2016 Apr; 77(4):313-6. PubMed ID: 26763581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods.
    Profaizer T; Lázár-Molnár E; Close DW; Delgado JC; Kumánovics A
    HLA; 2016 Jul; 88(1-2):14-24. PubMed ID: 27524804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HLA typing by next-generation sequencing - getting closer to reality.
    Gabriel C; Fürst D; Faé I; Wenda S; Zollikofer C; Mytilineos J; Fischer GF
    Tissue Antigens; 2014 Feb; 83(2):65-75. PubMed ID: 24447174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HLA*IMP--an integrated framework for imputing classical HLA alleles from SNP genotypes.
    Dilthey AT; Moutsianas L; Leslie S; McVean G
    Bioinformatics; 2011 Apr; 27(7):968-72. PubMed ID: 21300701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HLAProfiler utilizes k-mer profiles to improve HLA calling accuracy for rare and common alleles in RNA-seq data.
    Buchkovich ML; Brown CC; Robasky K; Chai S; Westfall S; Vincent BG; Weimer ET; Powers JG
    Genome Med; 2017 Sep; 9(1):86. PubMed ID: 28954626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.