These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 28166718)
1. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis. Choi SH; Labadorf AT; Myers RH; Lunetta KL; Dupuis J; DeStefano AL BMC Bioinformatics; 2017 Feb; 18(1):91. PubMed ID: 28166718 [TBL] [Abstract][Full Text] [Related]
2. Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data. Mi G; Di Y; Schafer DW PLoS One; 2015; 10(3):e0119254. PubMed ID: 25787144 [TBL] [Abstract][Full Text] [Related]
3. Power analysis and sample size estimation for RNA-Seq differential expression. Ching T; Huang S; Garmire LX RNA; 2014 Nov; 20(11):1684-96. PubMed ID: 25246651 [TBL] [Abstract][Full Text] [Related]
4. Firth's logistic regression with rare events: accurate effect estimates and predictions? Puhr R; Heinze G; Nold M; Lusa L; Geroldinger A Stat Med; 2017 Jun; 36(14):2302-2317. PubMed ID: 28295456 [TBL] [Abstract][Full Text] [Related]
5. NBLDA: negative binomial linear discriminant analysis for RNA-Seq data. Dong K; Zhao H; Tong T; Wan X BMC Bioinformatics; 2016 Sep; 17(1):369. PubMed ID: 27623864 [TBL] [Abstract][Full Text] [Related]
6. MCMSeq: Bayesian hierarchical modeling of clustered and repeated measures RNA sequencing experiments. Vestal BE; Moore CM; Wynn E; Saba L; Fingerlin T; Kechris K BMC Bioinformatics; 2020 Aug; 21(1):375. PubMed ID: 32859148 [TBL] [Abstract][Full Text] [Related]
7. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads. Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631 [TBL] [Abstract][Full Text] [Related]
8. The level of residual dispersion variation and the power of differential expression tests for RNA-Seq data. Mi G; Di Y PLoS One; 2015; 10(4):e0120117. PubMed ID: 25849826 [TBL] [Abstract][Full Text] [Related]
9. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies. Thorsen J; Brejnrod A; Mortensen M; Rasmussen MA; Stokholm J; Al-Soud WA; Sørensen S; Bisgaard H; Waage J Microbiome; 2016 Nov; 4(1):62. PubMed ID: 27884206 [TBL] [Abstract][Full Text] [Related]
10. Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data. Yoon S; Nam D BMC Genomics; 2017 May; 18(1):408. PubMed ID: 28545404 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis. Li W; Turner A; Aggarwal P; Matter A; Storvick E; Arnett DK; Broeckel U BMC Genomics; 2015 Dec; 16():1069. PubMed ID: 26673413 [TBL] [Abstract][Full Text] [Related]
12. Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model. Li X; Wu D; Cooper NGF; Rai SN Stat Appl Genet Mol Biol; 2019 Jan; 18(1):. PubMed ID: 30667368 [TBL] [Abstract][Full Text] [Related]
13. Statistical inferences for isoform expression in RNA-Seq. Jiang H; Wong WH Bioinformatics; 2009 Apr; 25(8):1026-32. PubMed ID: 19244387 [TBL] [Abstract][Full Text] [Related]
14. Higher order asymptotics for negative binomial regression inferences from RNA-sequencing data. Di Y; Emerson SC; Schafer DW; Kimbrel JA; Chang JH Stat Appl Genet Mol Biol; 2013 Mar; 12(1):49-70. PubMed ID: 23502340 [TBL] [Abstract][Full Text] [Related]
15. Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Van De Wiel MA; Leday GG; Pardo L; Rue H; Van Der Vaart AW; Van Wieringen WN Biostatistics; 2013 Jan; 14(1):113-28. PubMed ID: 22988280 [TBL] [Abstract][Full Text] [Related]
17. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. Li X; Cooper NGF; O'Toole TE; Rouchka EC BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223 [TBL] [Abstract][Full Text] [Related]
18. Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments. BinTayyash N; Georgaka S; John ST; Ahmed S; Boukouvalas A; Hensman J; Rattray M Bioinformatics; 2021 Nov; 37(21):3788-3795. PubMed ID: 34213536 [TBL] [Abstract][Full Text] [Related]
19. Single-gene negative binomial regression models for RNA-Seq data with higher-order asymptotic inference. Di Y Stat Interface; 2015; 8(4):405-418. PubMed ID: 28042360 [TBL] [Abstract][Full Text] [Related]