BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

627 related articles for article (PubMed ID: 28166722)

  • 1. Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-κB binding that is linked to immune phenotypes.
    Singh PK; van den Berg PR; Long MD; Vreugdenhil A; Grieshober L; Ochs-Balcom HM; Wang J; Delcambre S; Heikkinen S; Carlberg C; Campbell MJ; Sucheston-Campbell LE
    BMC Genomics; 2017 Feb; 18(1):132. PubMed ID: 28166722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of genetic variants affecting vitamin D receptor binding and associations with autoimmune disease.
    Gallone G; Haerty W; Disanto G; Ramagopalan SV; Ponting CP; Berlanga-Taylor AJ
    Hum Mol Genet; 2017 Jun; 26(11):2164-2176. PubMed ID: 28335003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
    Seuter S; Pehkonen P; Heikkinen S; Carlberg C
    Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of genome-wide VDR locations.
    Tuoresmäki P; Väisänen S; Neme A; Heikkinen S; Carlberg C
    PLoS One; 2014; 9(4):e96105. PubMed ID: 24787735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatic approaches to interrogating vitamin D receptor signaling.
    Campbell MJ
    Mol Cell Endocrinol; 2017 Sep; 453():3-13. PubMed ID: 28288905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular endocrinology of vitamin D on the epigenome level.
    Carlberg C
    Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of breast cancer associated variants that modulate transcription factor binding.
    Liu Y; Walavalkar NM; Dozmorov MG; Rich SS; Civelek M; Guertin MJ
    PLoS Genet; 2017 Sep; 13(9):e1006761. PubMed ID: 28957321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy.
    Heikkinen S; Väisänen S; Pehkonen P; Seuter S; Benes V; Carlberg C
    Nucleic Acids Res; 2011 Nov; 39(21):9181-93. PubMed ID: 21846776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants.
    Markunas CA; Johnson EO; Hancock DB
    Hum Genet; 2017 Jul; 136(7):911-919. PubMed ID: 28567521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin D receptor ChIP-seq in primary CD4+ cells: relationship to serum 25-hydroxyvitamin D levels and autoimmune disease.
    Handel AE; Sandve GK; Disanto G; Berlanga-Taylor AJ; Gallone G; Hanwell H; Drabløs F; Giovannoni G; Ebers GC; Ramagopalan SV
    BMC Med; 2013 Jul; 11():163. PubMed ID: 23849224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative genomic approaches to dissect clinically-significant relationships between the VDR cistrome and gene expression in primary colon cancer.
    Long MD; Campbell MJ
    J Steroid Biochem Mol Biol; 2017 Oct; 173():130-138. PubMed ID: 28027912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What do we learn from the genome-wide perspective on vitamin D3?
    Carlberg C
    Anticancer Res; 2015 Feb; 35(2):1143-51. PubMed ID: 25667505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the identification of potential regulatory variants within genome wide association candidate SNP sets.
    Chen CY; Chang IS; Hsiung CA; Wasserman WW
    BMC Med Genomics; 2014 Jun; 7():34. PubMed ID: 24920305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.
    Ramagopalan SV; Heger A; Berlanga AJ; Maugeri NJ; Lincoln MR; Burrell A; Handunnetthi L; Handel AE; Disanto G; Orton SM; Watson CT; Morahan JM; Giovannoni G; Ponting CP; Ebers GC; Knight JC
    Genome Res; 2010 Oct; 20(10):1352-60. PubMed ID: 20736230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of genome-wide binding of NF-κB in TNFα-stimulated HeLa cells.
    Xing Y; Yang Y; Zhou F; Wang J
    Gene; 2013 Sep; 526(2):142-9. PubMed ID: 23688556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Nucleotide Polymorphisms at a Distance from Aryl Hydrocarbon Receptor (AHR) Binding Sites Influence AHR Ligand-Dependent Gene Expression.
    Neavin DR; Lee JH; Liu D; Ye Z; Li H; Wang L; Ordog T; Weinshilboum RM
    Drug Metab Dispos; 2019 Sep; 47(9):983-994. PubMed ID: 31292129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first genome-wide view of vitamin D receptor locations and their mechanistic implications.
    Carlberg C; Seuter S; Heikkinen S
    Anticancer Res; 2012 Jan; 32(1):271-82. PubMed ID: 22213316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1alpha,25-Dihydroxyvitamin D3 inhibits transcriptional potential of nuclear factor kappa B in breast cancer cells.
    Tse AK; Zhu GY; Wan CK; Shen XL; Yu ZL; Fong WF
    Mol Immunol; 2010 May; 47(9):1728-38. PubMed ID: 20371119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association between genetic variation within vitamin D receptor-DNA binding sites and risk of basal cell carcinoma.
    Lin Y; Chahal HS; Wu W; Cho HG; Ransohoff KJ; Dai H; Tang JY; Sarin KY; Han J
    Int J Cancer; 2017 May; 140(9):2085-2091. PubMed ID: 28177523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic Effects of the Vitamin D Receptor: Potentially the Link between Vitamin D, Immune Cells, and Multiple Sclerosis.
    Lu M; Taylor BV; Körner H
    Front Immunol; 2018; 9():477. PubMed ID: 29593729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.