These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 28166778)
41. Detecting critical state before phase transition of complex biological systems by hidden Markov model. Chen P; Liu R; Li Y; Chen L Bioinformatics; 2016 Jul; 32(14):2143-50. PubMed ID: 27153710 [TBL] [Abstract][Full Text] [Related]
42. A model of sequential branching in hierarchical cell fate determination. Foster DV; Foster JG; Huang S; Kauffman SA J Theor Biol; 2009 Oct; 260(4):589-97. PubMed ID: 19615382 [TBL] [Abstract][Full Text] [Related]
43. Automated large-scale control of gene regulatory networks. Tan M; Alhajj R; Polat F IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):286-97. PubMed ID: 19858030 [TBL] [Abstract][Full Text] [Related]
44. PRODIGEN: visualizing the probability landscape of stochastic gene regulatory networks in state and time space. Ma C; Luciani T; Terebus A; Liang J; Marai GE BMC Bioinformatics; 2017 Feb; 18(Suppl 2):24. PubMed ID: 28251874 [TBL] [Abstract][Full Text] [Related]
45. Algebraic expressions of conditional expectations in gene regulatory networks. Sunkara V J Math Biol; 2019 Oct; 79(5):1779-1829. PubMed ID: 31377871 [TBL] [Abstract][Full Text] [Related]
46. Engineered internal noise stochastic resonator in gene network: a model study. Wang Z; Hou Z; Xin H; Zhang Z Biophys Chem; 2007 Feb; 125(2-3):281-5. PubMed ID: 17081673 [TBL] [Abstract][Full Text] [Related]
47. Organisation-Oriented Coarse Graining and Refinement of Stochastic Reaction Networks. Mu C; Dittrich P; Parker D; Rowe JE IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1152-1166. PubMed ID: 29994367 [TBL] [Abstract][Full Text] [Related]
48. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696 [TBL] [Abstract][Full Text] [Related]
54. Grand canonical Markov model: a stochastic theory for open nonequilibrium biochemical networks. Heuett WJ; Qian H J Chem Phys; 2006 Jan; 124(4):044110. PubMed ID: 16460152 [TBL] [Abstract][Full Text] [Related]
55. Higher order Boolean networks as models of cell state dynamics. Markert EK; Baas N; Levine AJ; Vazquez A J Theor Biol; 2010 Jun; 264(3):945-51. PubMed ID: 20303985 [TBL] [Abstract][Full Text] [Related]
56. Stationary moments, distribution conjugation and phenotypic regions in stochastic gene transcription. Zhang JJ; Zhou TS Math Biosci Eng; 2019 Jul; 16(5):6134-6166. PubMed ID: 31499756 [TBL] [Abstract][Full Text] [Related]
57. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions. Chevalier MW; El-Samad H J Chem Phys; 2014 Dec; 141(21):214108. PubMed ID: 25481130 [TBL] [Abstract][Full Text] [Related]
58. Modeling Gene Networks to Understand Multistability in Stem Cells. Menn D; Wang X Methods Mol Biol; 2019; 1975():173-189. PubMed ID: 31062310 [TBL] [Abstract][Full Text] [Related]
59. Discrete-time stochastic modeling and simulation of biochemical networks. Sandmann W Comput Biol Chem; 2008 Aug; 32(4):292-7. PubMed ID: 18499525 [TBL] [Abstract][Full Text] [Related]
60. Motifs emerge from function in model gene regulatory networks. Burda Z; Krzywicki A; Martin OC; Zagorski M Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17263-8. PubMed ID: 21960444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]