BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 28166824)

  • 1. Sensor Fusion to Infer Locations of Standing and Reaching Within the Home in Incomplete Spinal Cord Injury.
    Lonini L; Reissman T; Ochoa JM; Mummidisetty CK; Kording K; Jayaraman A
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S128-S134. PubMed ID: 28379922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer Data.
    Huang EJ; Onnela JP
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32630752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing Activity Behavior and Movement in a Naturalistic Environment Using Smart Home Techniques.
    Cook DJ; Schmitter-Edgecombe M; Dawadi P
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1882-92. PubMed ID: 26259225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement prediction using accelerometers in a human population.
    Xiao L; He B; Koster A; Caserotti P; Lange-Maia B; Glynn NW; Harris TB; Crainiceanu CM
    Biometrics; 2016 Jun; 72(2):513-24. PubMed ID: 26288278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Inertial Sensor-Based Activity Recognition in Neurological Populations.
    Celik Y; Aslan MF; Sabanci K; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limb accelerations during sleep are related to measures of strength, sensation, and spasticity among individuals with spinal cord injury.
    Rigot SK; Boninger ML; Ding D; Collinger JL; Dicianno BE; Worobey LA
    J Neuroeng Rehabil; 2022 Nov; 19(1):118. PubMed ID: 36329467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IMU-Based Monitoring for Assistive Diagnosis and Management of IoHT: A Review.
    Bo F; Yerebakan M; Dai Y; Wang W; Li J; Hu B; Gao S
    Healthcare (Basel); 2022 Jun; 10(7):. PubMed ID: 35885736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable airbag technology and machine learned models to mitigate falls after stroke.
    Botonis OK; Harari Y; Embry KR; Mummidisetty CK; Riopelle D; Giffhorn M; Albert MV; Heike V; Jayaraman A
    J Neuroeng Rehabil; 2022 Jun; 19(1):60. PubMed ID: 35715823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Improving the Prediction of Functional Ambulation After Spinal Cord Injury Through the Inclusion of Limb Accelerations During Sleep and Personal Factors.
    Rigot SK; Boninger ML; Ding D; McKernan G; Field-Fote EC; Hoffman J; Hibbs R; Worobey LA
    Arch Phys Med Rehabil; 2022 Apr; 103(4):676-687.e6. PubMed ID: 33839107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    J Neuroeng Rehabil; 2020 Nov; 17(1):148. PubMed ID: 33148315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of a Sensor-Based Technological Platform in Assessing Gait and Sleep of In-Hospital Stroke and Incomplete Spinal Cord Injury (iSCI) Patients.
    Hendriks MMS; Vos-van der Hulst M; Keijsers NLW
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Sensors in Ambulatory Individuals With a Spinal Cord Injury: From Energy Expenditure Estimation to Activity Recommendations.
    Popp WL; Schneider S; Bär J; Bösch P; Spengler CM; Gassert R; Curt A
    Front Neurol; 2019; 10():1092. PubMed ID: 31736845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outcome Measures of Free-Living Activity in Spinal Cord Injury Rehabilitation.
    Goodwin BM; Fortune E; Van Straaten MGP; Morrow MMB
    Curr Phys Med Rehabil Rep; 2019 Sep; 7(3):284-289. PubMed ID: 31406630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEMS Inertial Sensors Based Gait Analysis for Rehabilitation Assessment via Multi-Sensor Fusion.
    Qiu S; Liu L; Zhao H; Wang Z; Jiang Y
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: a pilot investigation validating two research grade sensors.
    Jayaraman C; Mummidisetty CK; Mannix-Slobig A; McGee Koch L; Jayaraman A
    J Neuroeng Rehabil; 2018 Mar; 15(1):19. PubMed ID: 29534737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury.
    Albert MV; Azeze Y; Courtois M; Jayaraman A
    J Neuroeng Rehabil; 2017 Feb; 14(1):10. PubMed ID: 28166824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting.
    O'Brien MK; Shawen N; Mummidisetty CK; Kaur S; Bo X; Poellabauer C; Kording K; Jayaraman A
    J Med Internet Res; 2017 May; 19(5):e184. PubMed ID: 28546137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.