These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 28167070)
1. Regulation by gut bacteria of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella. Orozco-Flores AA; Valadez-Lira JA; Oppert B; Gomez-Flores R; Tamez-Guerra R; Rodríguez-Padilla C; Tamez-Guerra P J Insect Physiol; 2017 Apr; 98():275-283. PubMed ID: 28167070 [TBL] [Abstract][Full Text] [Related]
2. Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner). Visweshwar R; Sharma HC; Akbar SM; Sreeramulu K Appl Biochem Biotechnol; 2015 Dec; 177(8):1621-37. PubMed ID: 26384494 [TBL] [Abstract][Full Text] [Related]
3. Comparative evaluation of phenoloxidase activity in different larval stages of four lepidopteran pests after exposure to Bacillus thuringiensis. Valadez-Lira JA; Alcocer-Gonzalez JM; Damas G; Nuñez-Mejía G; Oppert B; Rodriguez-Padilla C; Tamez-Guerra P J Insect Sci; 2012; 12():80. PubMed ID: 23414117 [TBL] [Abstract][Full Text] [Related]
4. Upregulation of the immune protein gene hemolin in the epidermis during the wandering larval stage of the Indian meal moth, Plodia interpunctella. Aye TT; Shim JK; Rhee IK; Lee KY J Insect Physiol; 2008 Aug; 54(8):1301-5. PubMed ID: 18675821 [TBL] [Abstract][Full Text] [Related]
5. Individual and Combined Effects of Bacillus Thuringiensis and Azadirachtin on Plodia Interpunctella Hübner (Lepidoptera: Pyralidae). Nouri-Ganbalani G; Borzoui E; Abdolmaleki A; Abedi Z; George Kamita S J Insect Sci; 2016; 16(1):. PubMed ID: 27638953 [TBL] [Abstract][Full Text] [Related]
6. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Raymond B; Johnston PR; Wright DJ; Ellis RJ; Crickmore N; Bonsall MB Environ Microbiol; 2009 Oct; 11(10):2556-63. PubMed ID: 19555371 [TBL] [Abstract][Full Text] [Related]
7. Immune response and susceptibility to Cotesia flavipes parasitizing Diatraea saccharalis larvae exposed to and surviving an LC Pinto CPG; Azevedo EB; Dos Santos ALZ; Cardoso CP; Fernandes FO; Rossi GD; Polanczyk RA J Invertebr Pathol; 2019 Sep; 166():107209. PubMed ID: 31201787 [TBL] [Abstract][Full Text] [Related]
8. Bacterial, but not baculoviral infections stimulate Hemolin expression in noctuid moths. Terenius O; Popham HJ; Shelby KS Dev Comp Immunol; 2009 Nov; 33(11):1176-85. PubMed ID: 19540262 [TBL] [Abstract][Full Text] [Related]
9. Activity of Selected Formulated Biorational and Synthetic Insecticides Against Larvae of Helicoverpa armigera (Lepidoptera: Noctuidae). Vivan LM; Torres JB; Fernandes PL J Econ Entomol; 2017 Feb; 110(1):118-126. PubMed ID: 28011685 [TBL] [Abstract][Full Text] [Related]
10. Cloning and Tissue-Specific Expression of a Chitin Deacetylase Gene from Helicoverpa armigera (Lepidoptera: Noctuidae) and Its Response to Bacillus thuringiensis. Han G; Li X; Zhang T; Zhu X; Li J J Insect Sci; 2015; 15(1):. PubMed ID: 26163665 [TBL] [Abstract][Full Text] [Related]
11. Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis. García-Robles I; De Loma J; Capilla M; Roger I; Boix-Montesinos P; Carrión P; Vicente M; López-Galiano MJ; Real MD; Rausell C Dev Comp Immunol; 2020 Mar; 104():103525. PubMed ID: 31655128 [TBL] [Abstract][Full Text] [Related]
12. Dietary Protein and Carbohydrate Levels Affect Performance and Digestive Physiology of Plodia interpunctella (Lepidoptera: Pyralidae). Borzoui E; Bandani AR; Goldansaz SH; Talaei-Hassanlouei R J Econ Entomol; 2018 Apr; 111(2):942-949. PubMed ID: 29361082 [TBL] [Abstract][Full Text] [Related]
15. Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. Raymond B; Lijek RS; Griffiths RI; Bonsall MB J Invertebr Pathol; 2008 Sep; 99(1):103-11. PubMed ID: 18533180 [TBL] [Abstract][Full Text] [Related]
16. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. Broderick NA; Robinson CJ; McMahon MD; Holt J; Handelsman J; Raffa KF BMC Biol; 2009 Mar; 7():11. PubMed ID: 19261175 [TBL] [Abstract][Full Text] [Related]
17. Feeding behavior and growth of corn earworm (Lepidoptera: noctuidae) larvae on Bacillus thuringiensis-treated (dipel 4L) and untreated meridic diet. Bowling RD; Higgins RA; Ahmad A; Wilde G J Econ Entomol; 2007 Aug; 100(4):1221-8. PubMed ID: 17849874 [TBL] [Abstract][Full Text] [Related]
18. Novel genetic factors involved in resistance to Bacillus thuringiensis in Plutella xylostella. Ayra-Pardo C; Raymond B; Gulzar A; Rodríguez-Cabrera L; Morán-Bertot I; Crickmore N; Wright DJ Insect Mol Biol; 2015 Dec; 24(6):589-600. PubMed ID: 26335439 [TBL] [Abstract][Full Text] [Related]
19. Hemolin expression in the silk glands of Galleria mellonella in response to bacterial challenge and prior to cell disintegration. Shaik HA; Sehnal F J Insect Physiol; 2009 Sep; 55(9):781-7. PubMed ID: 19414015 [TBL] [Abstract][Full Text] [Related]
20. Changes in immune responses of Helicoverpa armigera Hübner followed by feeding on Knotgrass, Polygonum persicaria agglutinin. Rahimi V; Hajizadeh J; Zibaee A; Sendi JJ Arch Insect Biochem Physiol; 2019 May; 101(1):e21543. PubMed ID: 30854723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]