BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1024 related articles for article (PubMed ID: 28167121)

  • 1. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface.
    Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J
    Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles.
    Hasegawa K; Kasuga S; Takasaki K; Mizuno K; Liu M; Ushiba J
    J Neuroeng Rehabil; 2017 Aug; 14(1):85. PubMed ID: 28841920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P; He W; Zhou Y; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise estimation of human corticospinal excitability associated with the levels of motor imagery-related EEG desynchronization extracted by a locked-in amplifier algorithm.
    Takahashi K; Kato K; Mizuguchi N; Ushiba J
    J Neuroeng Rehabil; 2018 Nov; 15(1):93. PubMed ID: 30384845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.
    Pichiorri F; De Vico Fallani F; Cincotti F; Babiloni F; Molinari M; Kleih SC; Neuper C; Kübler A; Mattia D
    J Neural Eng; 2011 Apr; 8(2):025020. PubMed ID: 21436514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex.
    Takemi M; Masakado Y; Liu M; Ushiba J
    J Neurophysiol; 2013 Sep; 110(5):1158-66. PubMed ID: 23761697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensorimotor Rhythm BCI with Simultaneous High Definition-Transcranial Direct Current Stimulation Alters Task Performance.
    Baxter BS; Edelman BJ; Nesbitt N; He B
    Brain Stimul; 2016; 9(6):834-841. PubMed ID: 27522166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A BCI-Based Vibrotactile Neurofeedback Training Improves Motor Cortical Excitability During Motor Imagery.
    Grigorev NA; Savosenkov AO; Lukoyanov MV; Udoratina A; Shusharina NN; Kaplan AY; Hramov AE; Kazantsev VB; Gordleeva S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1583-1592. PubMed ID: 34343094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing sensorimotor BCI performance with assistive afferent activity: An online evaluation.
    Vidaurre C; Ramos Murguialday A; Haufe S; Gómez M; Müller KR; Nikulin VV
    Neuroimage; 2019 Oct; 199():375-386. PubMed ID: 31158476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery.
    Toppi J; Risetti M; Quitadamo LR; Petti M; Bianchi L; Salinari S; Babiloni F; Cincotti F; Mattia D; Astolfi L
    J Neural Eng; 2014 Jun; 11(3):035010. PubMed ID: 24835634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery.
    Zich C; Debener S; Kranczioch C; Bleichner MG; Gutberlet I; De Vos M
    Neuroimage; 2015 Jul; 114():438-47. PubMed ID: 25887263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation.
    Kraus D; Naros G; Guggenberger R; Leão MT; Ziemann U; Gharabaghi A
    J Neurosci; 2018 Feb; 38(6):1396-1407. PubMed ID: 29335359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.
    Jeunet C; Jahanpour E; Lotte F
    J Neural Eng; 2016 Jun; 13(3):036024. PubMed ID: 27172246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.