These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28167579)

  • 1. Statistical evidence of anasymptotic geometric structure to the momentum transporting motions in turbulent boundary layers.
    Morrill-Winter C; Philip J; Klewicki J
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.
    Baars WJ; Hutchins N; Marusic I
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows.
    Chini GP; Montemuro B; White CM; Klewicki J
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-sustaining processes at all scales in wall-bounded turbulent shear flows.
    Cossu C; Hwang Y
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-similarity in the inertial region of wall turbulence.
    Klewicki J; Philip J; Marusic I; Chauhan K; Morrill-Winter C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063015. PubMed ID: 25615195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.
    Sharma AS; Moarref R; McKeon BJ
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.
    Örlü R; Fiorini T; Segalini A; Bellani G; Talamelli A; Alfredsson PH
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.
    Dogan E; Hearst RJ; Ganapathisubramani B
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.
    Duvvuri S; McKeon B
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure identification in pipe flow using proper orthogonal decomposition.
    Hellström LH; Smits AJ
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-dimensional representation of near-wall dynamics in shear flows, with implications to wall-models.
    Schmid PJ; Sayadi T
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reynolds number invariance of the structure inclination angle in wall turbulence.
    Marusic I; Heuer WD
    Phys Rev Lett; 2007 Sep; 99(11):114504. PubMed ID: 17930444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristic scales of Townsend's wall-attached eddies.
    Lozano-Durán A; Bae HJ
    J Fluid Mech; 2019 Jun; 868():698-725. PubMed ID: 31631906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A statistical state dynamics approach to wall turbulence.
    Farrell BF; Gayme DF; Ioannou PJ
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physical model of the turbulent boundary layer consonant with mean momentum balance structure.
    Klewicki J; Fife P; Wei T; McMurtry P
    Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):823-39. PubMed ID: 17244591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat transport in Rayleigh-Bénard convection and angular momentum transport in Taylor-Couette flow: a comparative study.
    Brauckmann HJ; Eckhardt B; Schumacher J
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic slip wall model for large-eddy simulation.
    Bae HJ; Lozano-Durán A; Bose ST; Moin P
    J Fluid Mech; 2019 Jan; 859():400-432. PubMed ID: 31631905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large- and very-large-scale motions in channel and boundary-layer flows.
    Balakumar BJ; Adrian RJ
    Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):665-81. PubMed ID: 17244580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers.
    Van Blitterswyk J; Rocha J
    J Acoust Soc Am; 2017 Feb; 141(2):1257. PubMed ID: 28253673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number.
    Klewicki JC; Chini GP; Gibson JF
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.