These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Samiei E; Tabrizian M; Hoorfar M Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540 [TBL] [Abstract][Full Text] [Related]
6. A Low-Cost, Disposable and Portable Inkjet-Printed Biochip for the Developing World. Joshi K; Velasco V; Esfandyarpour R Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630509 [TBL] [Abstract][Full Text] [Related]
7. An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays. Dixon C; Ng AH; Fobel R; Miltenburg MB; Wheeler AR Lab Chip; 2016 Nov; 16(23):4560-4568. PubMed ID: 27801455 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Kumar S; Kumar S; Ali MA; Anand P; Agrawal VV; John R; Maji S; Malhotra BD Biotechnol J; 2013 Nov; 8(11):1267-79. PubMed ID: 24019250 [TBL] [Abstract][Full Text] [Related]
10. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328 [TBL] [Abstract][Full Text] [Related]
11. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. Karasu T; Özgür E; Uzun L J Pharm Biomed Anal; 2023 Mar; 226():115257. PubMed ID: 36669397 [TBL] [Abstract][Full Text] [Related]
12. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Dalili A; Samiei E; Hoorfar M Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633 [TBL] [Abstract][Full Text] [Related]
13. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. Arshavsky-Graham S; Segal E Adv Biochem Eng Biotechnol; 2022; 179():247-265. PubMed ID: 32435872 [TBL] [Abstract][Full Text] [Related]
14. A Machine Learning-Assisted Nanoparticle-Printed Biochip for Real-Time Single Cancer Cell Analysis. Joshi K; Javani A; Park J; Velasco V; Xu B; Razorenova O; Esfandyarpour R Adv Biosyst; 2020 Nov; 4(11):e2000160. PubMed ID: 33025770 [TBL] [Abstract][Full Text] [Related]
15. A portable and integrated instrument for cell manipulation by dielectrophoresis. Burgarella S; Di Bari M Electrophoresis; 2015 Jul; 36(13):1466-70. PubMed ID: 25808778 [TBL] [Abstract][Full Text] [Related]
16. Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Park K; Suk HJ; Akin D; Bashir R Lab Chip; 2009 Aug; 9(15):2224-9. PubMed ID: 19606300 [TBL] [Abstract][Full Text] [Related]
17. Toner and paper-based fabrication techniques for microfluidic applications. Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911 [TBL] [Abstract][Full Text] [Related]
18. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip. Bsoul A; Pan S; Cretu E; Stoeber B; Walus K Lab Chip; 2016 Aug; 16(17):3351-61. PubMed ID: 27444216 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Foudeh AM; Fatanat Didar T; Veres T; Tabrizian M Lab Chip; 2012 Sep; 12(18):3249-66. PubMed ID: 22859057 [TBL] [Abstract][Full Text] [Related]
20. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Govindarajan AV; Ramachandran S; Vigil GD; Yager P; Böhringer KF Lab Chip; 2012 Jan; 12(1):174-81. PubMed ID: 22068336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]