BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28168128)

  • 1. Three-Dimensional Printing of a Hemorrhagic Cervical Cancer Model for Postgraduate Gynecological Training.
    Bartellas M; Ryan S; Doucet G; Murphy D; Turner J
    Cureus; 2017 Jan; 9(1):e950. PubMed ID: 28168128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovations in Airway Education: 3D Printed Neonatal and Pediatric Needle Cricothyrotomy Trainers.
    Hampton Z; Davis A; Kalnow A
    J Educ Teach Emerg Med; 2020 Apr; 5(2):I1-I8. PubMed ID: 37465404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical 3D-Printed Silicone Prostate Gland Models and Rectal Examination Task Trainer for the Training of Medical Residents and Undergraduate Medical Students.
    DeZeeuw J; O'Regan NB; Goudie C; Organ M; Dubrowski A
    Cureus; 2020 Jul; 12(7):e9020. PubMed ID: 32775100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Silicone Vaginal Repair Models as an Adjunct to Mannequins for Simulation Training in Sexual Assault Clinical Learning for Obstetrics and Gynecology Medical Residents.
    Comeau M; Goudie C; Murphy D; Fowler E; Dubrowski A
    Cureus; 2020 Mar; 12(3):e7410. PubMed ID: 32337134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid simulation combining a high fidelity scenario with a pelvic ultrasound task trainer enhances the training and evaluation of endovaginal ultrasound skills.
    Girzadas DV; Antonis MS; Zerth H; Lambert M; Clay L; Bose S; Harwood R
    Acad Emerg Med; 2009 May; 16(5):429-35. PubMed ID: 19388924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the Efficacy of Anatomical Silicone Models Developed from a 3D Printed Mold for Perineal Repair Suturing Simulation.
    Goudie C; Shanahan J; Gill A; Murphy D; Dubrowski A
    Cureus; 2018 Aug; 10(8):e3181. PubMed ID: 30405980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-material three dimensional printed models for simulation of bronchoscopy.
    Ho BHK; Chen CJ; Tan GJS; Yeong WY; Tan HKJ; Lim AYH; Ferenczi MA; Mogali SR
    BMC Med Educ; 2019 Jun; 19(1):236. PubMed ID: 31248397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional (3D) printed endovascular simulation models: a feasibility study.
    Mafeld S; Nesbitt C; McCaslin J; Bagnall A; Davey P; Bose P; Williams R
    Ann Transl Med; 2017 Feb; 5(3):42. PubMed ID: 28251121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microcontroller-based simulation of dural venous sinus injury for neurosurgical training.
    Cleary DR; Siler DA; Whitney N; Selden NR
    J Neurosurg; 2018 May; 128(5):1553-1559. PubMed ID: 28574314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cervical cerclage task trainer for maternal-fetal medicine fellows and obstetrics/gynecology residents.
    Nitsche JF; Brost BC
    Simul Healthc; 2012 Oct; 7(5):321-5. PubMed ID: 22722707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Three-Dimensionally Printed Ultrasound-Guided Peripheral Intravenous Catheter Phantom.
    Tan TX; Wu YY; Riley I; Duanmu Y; Rylowicz S; Shimada K
    Cureus; 2021 Aug; 13(8):e17139. PubMed ID: 34532175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Evaluation of a 3D-Printed Adult Proximal Tibia Model for Simulation Training in Intraosseous Access.
    Engelbrecht R; Patey C; Dubrowski A; Norman P
    Cureus; 2020 Dec; 12(12):e12180. PubMed ID: 33489591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulator for training in endovascular aneurysm repair: The use of three dimensional printers.
    Torres IO; De Luccia N
    Eur J Vasc Endovasc Surg; 2017 Aug; 54(2):247-253. PubMed ID: 28647340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Perceived Efficacy of a Silicone Suturing Task Trainer Using Input from Novice Medical Trainees.
    Gallagher PO; Bishop N; Dubrowski A
    Cureus; 2020 Jan; 12(1):e6612. PubMed ID: 32064192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing postgraduate training in pediatric and adolescent gynecology: evaluation of an advanced pelvic simulation session.
    Dumont T; Hakim J; Black A; Fleming N
    J Pediatr Adolesc Gynecol; 2014 Dec; 27(6):360-70. PubMed ID: 25256870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling and Manufacturing of a 3D Printed Trachea for Cricothyroidotomy Simulation.
    Doucet G; Ryan S; Bartellas M; Parsons M; Dubrowski A; Renouf T
    Cureus; 2017 Aug; 9(8):e1575. PubMed ID: 29057187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Future of Biomechanical Spine Research: Conception and Design of a Dynamic 3D Printed Cervical Myelography Phantom.
    Clifton W; Nottmeier E; Damon A; Dove C; Pichelmann M
    Cureus; 2019 May; 11(5):e4591. PubMed ID: 31309016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A radiopaque 3D printed, anthropomorphic phantom for simulation of CT-guided procedures.
    Jahnke P; Schwarz FB; Ziegert M; Almasi T; Abdelhadi O; Nunninger M; Hamm B; Scheel M
    Eur Radiol; 2018 Nov; 28(11):4818-4823. PubMed ID: 29789910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of an Innovative Bleeding Cricothyrotomy Model.
    Hughes KE; Biffar D; Ahanonu EO; Cahir TM; Hamilton A; Sakles JC
    Cureus; 2018 Sep; 10(9):e3327. PubMed ID: 30473960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.