These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 28168295)
1. Discovery of cancer common and specific driver gene sets. Zhang J; Zhang S Nucleic Acids Res; 2017 Jun; 45(10):e86. PubMed ID: 28168295 [TBL] [Abstract][Full Text] [Related]
2. Identifying overlapping mutated driver pathways by constructing gene networks in cancer. Wu H; Gao L; Li F; Song F; Yang X; Kasabov N BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819 [TBL] [Abstract][Full Text] [Related]
3. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers. Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738 [TBL] [Abstract][Full Text] [Related]
4. Identifying Cancer Specific Driver Modules Using a Network-Based Method. Li F; Gao L; Wang P; Hu Y Molecules; 2018 May; 23(5):. PubMed ID: 29738475 [TBL] [Abstract][Full Text] [Related]
5. FGMD: A novel approach for functional gene module detection in cancer. Jin D; Lee H PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808 [TBL] [Abstract][Full Text] [Related]
6. MEGSA: A Powerful and Flexible Framework for Analyzing Mutual Exclusivity of Tumor Mutations. Hua X; Hyland PL; Huang J; Song L; Zhu B; Caporaso NE; Landi MT; Chatterjee N; Shi J Am J Hum Genet; 2016 Mar; 98(3):442-455. PubMed ID: 26899600 [TBL] [Abstract][Full Text] [Related]
7. Discovery of co-occurring driver pathways in cancer. Zhang J; Wu LY; Zhang XS; Zhang S BMC Bioinformatics; 2014 Aug; 15(1):271. PubMed ID: 25106096 [TBL] [Abstract][Full Text] [Related]
8. The enigmatic role of RUNX1 in female-related cancers - current knowledge & future perspectives. Riggio AI; Blyth K FEBS J; 2017 Aug; 284(15):2345-2362. PubMed ID: 28304148 [TBL] [Abstract][Full Text] [Related]
9. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. Zhang J; Zhang S; Wang Y; Zhang XS BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034 [TBL] [Abstract][Full Text] [Related]
10. The BRCA1/BARD1 ubiquitin ligase and its substrates. Witus SR; Stewart MD; Klevit RE Biochem J; 2021 Sep; 478(18):3467-3483. PubMed ID: 34591954 [TBL] [Abstract][Full Text] [Related]
11. Integrative analysis reveals disrupted pathways regulated by microRNAs in cancer. Wilk G; Braun R Nucleic Acids Res; 2018 Feb; 46(3):1089-1101. PubMed ID: 29294105 [TBL] [Abstract][Full Text] [Related]
12. CDPath: Cooperative Driver Pathways Discovery Using Integer Linear Programming and Markov Clustering. Yang Z; Yu G; Guo M; Yu J; Zhang X; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1384-1395. PubMed ID: 31581094 [TBL] [Abstract][Full Text] [Related]
13. Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer. Annunziato S; de Ruiter JR; Henneman L; Brambillasca CS; Lutz C; Vaillant F; Ferrante F; Drenth AP; van der Burg E; Siteur B; van Gerwen B; de Bruijn R; van Miltenburg MH; Huijbers IJ; van de Ven M; Visvader JE; Lindeman GJ; Wessels LFA; Jonkers J Nat Commun; 2019 Jan; 10(1):397. PubMed ID: 30674894 [TBL] [Abstract][Full Text] [Related]
14. Timing somatic events in the evolution of cancer. Jolly C; Van Loo P Genome Biol; 2018 Jul; 19(1):95. PubMed ID: 30041675 [TBL] [Abstract][Full Text] [Related]
15. Integrating mutation and gene expression cross-sectional data to infer cancer progression. Fleck JL; Pavel AB; Cassandras CG BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975 [TBL] [Abstract][Full Text] [Related]
16. MicroRNA-363-3p promote the development of acute myeloid leukemia with RUNX1 mutation by targeting SPRYD4 and FNDC3B. Chen Y; Chen S; Lu J; Yuan D; He L; Qin P; Tan H; Xu L Medicine (Baltimore); 2021 May; 100(18):e25807. PubMed ID: 33950983 [TBL] [Abstract][Full Text] [Related]
17. Identifying Hepatocellular Carcinoma Driver Genes by Integrative Pathway Crosstalk and Protein Interaction Network. Chen W; Jiang J; Wang PP; Gong L; Chen J; Du W; Bi K; Diao H DNA Cell Biol; 2019 Oct; 38(10):1112-1124. PubMed ID: 31464520 [TBL] [Abstract][Full Text] [Related]
18. Integrating multi-omics for uncovering the architecture of cross-talking pathways in breast cancer. Wang L; Xiao Y; Ping Y; Li J; Zhao H; Li F; Hu J; Zhang H; Deng Y; Tian J; Li X PLoS One; 2014; 9(8):e104282. PubMed ID: 25137136 [TBL] [Abstract][Full Text] [Related]
19. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration. Zhang W; Wang SL Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of p53 protein is frequent in ovarian cancers associated with BRCA1 and BRCA2 germline mutations. Zweemer RP; Shaw PA; Verheijen RM; Ryan A; Berchuck A; Ponder BA; Risch H; McLaughlin JR; Narod SA; Menko FH; Kenemans P; Jacobs IJ J Clin Pathol; 1999 May; 52(5):372-5. PubMed ID: 10560359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]