BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 28168667)

  • 1. Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity.
    Oksel C; Ma CY; Liu JJ; Wilkins T; Wang XZ
    Adv Exp Med Biol; 2017; 947():103-142. PubMed ID: 28168667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current situation on the availability of nanostructure-biological activity data.
    Oksel C; Ma CY; Wang XZ
    SAR QSAR Environ Res; 2015; 26(2):79-94. PubMed ID: 25608859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches.
    Oksel C; Winkler DA; Ma CY; Wilkins T; Wang XZ
    Nanotoxicology; 2016 Sep; 10(7):1001-12. PubMed ID: 26956430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representing and describing nanomaterials in predictive nanoinformatics.
    Wyrzykowska E; Mikolajczyk A; Lynch I; Jeliazkova N; Kochev N; Sarimveis H; Doganis P; Karatzas P; Afantitis A; Melagraki G; Serra A; Greco D; Subbotina J; Lobaskin V; Bañares MA; Valsami-Jones E; Jagiello K; Puzyn T
    Nat Nanotechnol; 2022 Sep; 17(9):924-932. PubMed ID: 35982314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotoxicity assessment: A challenging application for cutting edge electroanalytical tools.
    Bettazzi F; Palchetti I
    Anal Chim Acta; 2019 Sep; 1072():61-74. PubMed ID: 31146866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials.
    Liu Q; Wang X; Xia T
    Anal Bioanal Chem; 2018 Sep; 410(24):6097-6111. PubMed ID: 30066194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials.
    Chen G; Vijver MG; Xiao Y; Peijnenburg WJGM
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28858269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials.
    Chen G; Peijnenburg W; Xiao Y; Vijver MG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28704975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano(Q)SAR: Challenges, pitfalls and perspectives.
    Tantra R; Oksel C; Puzyn T; Wang J; Robinson KN; Wang XZ; Ma CY; Wilkins T
    Nanotoxicology; 2015; 9(5):636-42. PubMed ID: 25211549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials.
    Buglak AA; Zherdev AV; Dzantiev BB
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening.
    Nel A; Xia T; Meng H; Wang X; Lin S; Ji Z; Zhang H
    Acc Chem Res; 2013 Mar; 46(3):607-21. PubMed ID: 22676423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems Biology to Support Nanomaterial Grouping.
    Riebeling C; Jungnickel H; Luch A; Haase A
    Adv Exp Med Biol; 2017; 947():143-171. PubMed ID: 28168668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Nanotoxicology Models for Environmental Risk Assessment of Engineered Nanomaterials.
    Tang W; Zhang X; Hong H; Chen J; Zhao Q; Wu F
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines.
    Albalawi F; Hussein MZ; Fakurazi S; Masarudin MJ
    Int J Nanomedicine; 2021; 16():161-184. PubMed ID: 33447033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. International landscape of limits and recommendations for occupational exposure to engineered nanomaterials.
    Rodríguez-Ibarra C; Déciga-Alcaraz A; Ispanixtlahuatl-Meráz O; Medina-Reyes EI; Delgado-Buenrostro NL; Chirino YI
    Toxicol Lett; 2020 Apr; 322():111-119. PubMed ID: 31981686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment.
    Nel AE; Nasser E; Godwin H; Avery D; Bahadori T; Bergeson L; Beryt E; Bonner JC; Boverhof D; Carter J; Castranova V; Deshazo JR; Hussain SM; Kane AB; Klaessig F; Kuempel E; Lafranconi M; Landsiedel R; Malloy T; Miller MB; Morris J; Moss K; Oberdorster G; Pinkerton K; Pleus RC; Shatkin JA; Thomas R; Tolaymat T; Wang A; Wong J
    ACS Nano; 2013 Aug; 7(8):6422-33. PubMed ID: 23924032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.
    Winkler DA; Mombelli E; Pietroiusti A; Tran L; Worth A; Fadeel B; McCall MJ
    Toxicology; 2013 Nov; 313(1):15-23. PubMed ID: 23165187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
    Zhu M; Nie G; Meng H; Xia T; Nel A; Zhao Y
    Acc Chem Res; 2013 Mar; 46(3):622-31. PubMed ID: 22891796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing risk assessments for the development of occupational exposure limits for engineered nanomaterials.
    Schulte PA; Kuempel ED; Drew NM
    Regul Toxicol Pharmacol; 2018 Jun; 95():207-219. PubMed ID: 29574195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.