These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28169378)

  • 21. Atomic structure of Au-Pd bimetallic alloyed nanoparticles.
    Ding Y; Fan F; Tian Z; Wang ZL
    J Am Chem Soc; 2010 Sep; 132(35):12480-6. PubMed ID: 20712315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dealloying process of core-shell Au@AuAg nanorods for porous nanorods with enhanced catalytic activity.
    Guo X; Ye W; Sun H; Zhang Q; Yang J
    Nanoscale; 2013 Dec; 5(24):12582-8. PubMed ID: 24172858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pt-Sn alloy shells with tunable composition and structure on Au nanoparticles for boosting ethanol oxidation.
    Qian N; Ji L; Li X; Huang J; Li J; Wu X; Yang D; Zhang H
    Front Chem; 2022; 10():993894. PubMed ID: 36110140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic-level alloying and de-alloying in doped gold nanoparticles.
    Gottlieb E; Qian H; Jin R
    Chemistry; 2013 Mar; 19(13):4238-43. PubMed ID: 23404729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lateral etching of core-shell Au@Metal nanorods to metal-tipped au nanorods with improved catalytic activity.
    Guo X; Zhang Q; Sun Y; Zhao Q; Yang J
    ACS Nano; 2012 Feb; 6(2):1165-75. PubMed ID: 22224460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods.
    Zong S; Wang Z; Yang J; Wang C; Xu S; Cui Y
    Talanta; 2012 Aug; 97():368-75. PubMed ID: 22841094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating lattice strain impact on the alloyed surface of small Au@PdPt core-shell nanoparticles.
    Williams BP; Yaguchi M; Lo WS; Kao CR; Lamontagne LK; Sneed BT; Brodsky CN; Chou LY; Kuo CH; Tsung CK
    Nanoscale; 2020 Apr; 12(16):8687-8692. PubMed ID: 32267279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework.
    Jiang HL; Akita T; Ishida T; Haruta M; Xu Q
    J Am Chem Soc; 2011 Feb; 133(5):1304-6. PubMed ID: 21214205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling Shape and Plasmon Resonance of Pt-Etched Au@Ag Nanorods.
    Ye R; Zhang Y; Chen Y; Tang L; Wang Q; Wang Q; Li B; Zhou X; Liu J; Hu J
    Langmuir; 2018 May; 34(20):5719-5727. PubMed ID: 29708347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au.
    Gao C; Hu Y; Wang M; Chi M; Yin Y
    J Am Chem Soc; 2014 May; 136(20):7474-9. PubMed ID: 24821567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment.
    Liu K; Ohodnicki PR; Kong X; Lee SS; Du H
    Nanotechnology; 2019 Oct; 30(40):405704. PubMed ID: 31207594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-Scattering Simulations from Spherical Bimetallic Core-Shell Nanoparticles.
    Ruffino F
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33810270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utility of PEGylated dithiolane ligands for direct synthesis of water-soluble Au, Ag, Pt, Pd, Cu and AuPt nanoparticles.
    Oh E; Delehanty JB; Klug CA; Susumu K; Russ Algar W; Goswami R; Medintz IL
    Chem Commun (Camb); 2018 Feb; 54(16):1956-1959. PubMed ID: 29319069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation.
    Zhang J; Feng Y; Mi J; Shen Y; Tu Z; Liu L
    J Hazard Mater; 2018 Jan; 342():121-130. PubMed ID: 28826054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy.
    Yang J; Shen D; Zhou L; Li W; Fan J; El-Toni AM; Zhang WX; Zhang F; Zhao D
    Adv Healthc Mater; 2014 Oct; 3(10):1620-8. PubMed ID: 24665061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.
    Hu B; Wang N; Han L; Chen ML; Wang JH
    Acta Biomater; 2015 Jan; 11():511-9. PubMed ID: 25219350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light Scattering Calculations for Spherical Metallic Nanoparticles (Ag, Au) Coated by TCO (AZO, ITO, PEDOT:PSS) Shell.
    Ruffino F
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ growth of catalytic active Au-Pt bimetallic nanorods in thermoresponsive core-shell microgels.
    Lu Y; Yuan J; Polzer F; Drechsler M; Preussner J
    ACS Nano; 2010 Dec; 4(12):7078-86. PubMed ID: 21082786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.