These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28169378)

  • 41. 4.9% Au stabilizes Ag in an atomically homogenous bimetallic alloy for anisotropic nanocrystals with enhanced stability under light irradiation.
    Xu Z; Xie H; Ye W; Yang Y; Ni W
    Nanoscale; 2021 Jun; 13(23):10335-10341. PubMed ID: 34096558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Au@Ag Core-Shell Nanorods Support Plasmonic Fano Resonances.
    Peña-Rodríguez O; Díaz-Núñez P; González-Rubio G; Manzaneda-González V; Rivera A; Perlado JM; Junquera E; Guerrero-Martínez A
    Sci Rep; 2020 Apr; 10(1):5921. PubMed ID: 32246058
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid controlled synthesis of gold-platinum nanorods with excellent photothermal properties under 808 nm excitation.
    Wang J; Duan Q; Yang M; Zhang B; Guo L; Li P; Zhang W; Sang S
    Beilstein J Nanotechnol; 2021; 12():462-472. PubMed ID: 34104623
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of laser-induced inter-welding between Au and Ag nanoparticles and the plasmonic properties of welded dimers.
    Xu X; Isik T; Kundu S; Ortalan V
    Nanoscale; 2018 Dec; 10(48):23050-23058. PubMed ID: 30511072
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures.
    Zhang R; Zhou Y; Peng L; Li X; Chen S; Feng X; Guan Y; Huang W
    Sci Rep; 2016 Apr; 6():25036. PubMed ID: 27125309
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods.
    Ruan Q; Fang C; Jiang R; Jia H; Lai Y; Wang J; Lin HQ
    Nanoscale; 2016 Mar; 8(12):6514-26. PubMed ID: 26935180
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dielectric function modelling and sensitivity forecast for Au-Ag alloy nanostructures.
    Wang X; Kan C; Xu J; Zhu X; Jiang M; Ni Y
    Phys Chem Chem Phys; 2020 Jul; 22(26):14932-14940. PubMed ID: 32588011
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of Femtosecond Pulsed Laser-Induced Atomic Redistribution in Bimetallic Au-Pd Nanorods on Optoelectronic and Catalytic Properties.
    Nazemi M; Panikkanvalappil SR; Liao CK; Mahmoud MA; El-Sayed MA
    ACS Nano; 2021 Jun; 15(6):10241-10252. PubMed ID: 34032116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors.
    Yin A; He Q; Lin Z; Luo L; Liu Y; Yang S; Wu H; Ding M; Huang Y; Duan X
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):583-7. PubMed ID: 26783058
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gold nanobipyramids doped with Au/Pd alloyed nanoclusters for high efficiency ethanol electrooxidation.
    Hanqi B; Xu J; Zhu X; Kan C
    Nanoscale Adv; 2022 Mar; 4(7):1827-1834. PubMed ID: 36132164
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles.
    Chow TH; Li N; Bai X; Zhuo X; Shao L; Wang J
    Acc Chem Res; 2019 Aug; 52(8):2136-2146. PubMed ID: 31368690
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electronic transfer as a route to increase the chemical stability in gold and silver core-shell nanoparticles.
    Mott DM; Anh DT; Singh P; Shankar C; Maenosono S
    Adv Colloid Interface Sci; 2012 Dec; 185-186():14-33. PubMed ID: 22999044
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures.
    Tsai CH; Chen SY; Song JM; Haruta M; Kurata H
    Nanoscale Res Lett; 2015 Dec; 10(1):438. PubMed ID: 26563266
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controllable preparation of core-shell Au-Ag nanoshuttles with improved refractive index sensitivity and SERS activity.
    Bai T; Sun J; Che R; Xu L; Yin C; Guo Z; Gu N
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3331-40. PubMed ID: 24533919
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Yield Synthesis of Crystal-Phase-Heterostructured 4H/fcc Au@Pd Core-Shell Nanorods for Electrocatalytic Ethanol Oxidation.
    Chen Y; Fan Z; Luo Z; Liu X; Lai Z; Li B; Zong Y; Gu L; Zhang H
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28731264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.
    Yang M; Wang Z; Wang W; Liu CJ
    Nanoscale Res Lett; 2014; 9(1):405. PubMed ID: 25177221
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions.
    Huang CC; Yang Z; Chang HT
    Langmuir; 2004 Jul; 20(15):6089-92. PubMed ID: 15248687
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Au nanorods on potential barrier modulation in morphologically controlled Au@Cu2O core-shell nanoreactors for gas sensor applications.
    Majhi SM; Rai P; Raj S; Chon BS; Park KK; Yu YT
    ACS Appl Mater Interfaces; 2014 May; 6(10):7491-7. PubMed ID: 24779525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.