These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28169441)

  • 1. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration.
    Lee JM; Seo HI; Bae JH; Chung BG
    Electrophoresis; 2017 May; 38(9-10):1318-1324. PubMed ID: 28169441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
    Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG
    Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic co-cultures with hydrogel-based ligand trap to study paracrine signals giving rise to cancer drug resistance.
    Patel D; Gao Y; Son K; Siltanen C; Neve RM; Ferrara K; Revzin A
    Lab Chip; 2015 Dec; 15(24):4614-24. PubMed ID: 26542093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device.
    Ma H; Liu T; Qin J; Lin B
    Electrophoresis; 2010 May; 31(10):1599-605. PubMed ID: 20414883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropassage-embedding composite hydrogel fibers enable quantitative evaluation of cancer cell invasion under 3D coculture conditions.
    Sugimoto M; Kitagawa Y; Yamada M; Yajima Y; Utoh R; Seki M
    Lab Chip; 2018 May; 18(9):1378-1387. PubMed ID: 29658964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional co-culture microfluidic model and its application for research on cancer stem-like cells inducing migration of endothelial cells.
    Zhao Y; Yan X; Li B; Ke M; Chen S; Xu Z; Cai S
    Biotechnol Lett; 2017 Sep; 39(9):1425-1432. PubMed ID: 28536939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening.
    Mi S; Du Z; Xu Y; Wu Z; Qian X; Zhang M; Sun W
    Sci Rep; 2016 Oct; 6():35544. PubMed ID: 27762336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three dimensional multicellular co-cultures and anti-cancer drug assays in rapid prototyped multilevel microfluidic devices.
    Hwang H; Park J; Shin C; Do Y; Cho YK
    Biomed Microdevices; 2013 Aug; 15(4):627-634. PubMed ID: 23232700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device.
    Liu T; Lin B; Qin J
    Lab Chip; 2010 Jul; 10(13):1671-7. PubMed ID: 20414488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput combinatorial cell co-culture using microfluidics.
    Tumarkin E; Tzadu L; Csaszar E; Seo M; Zhang H; Lee A; Peerani R; Purpura K; Zandstra PW; Kumacheva E
    Integr Biol (Camb); 2011 Jun; 3(6):653-62. PubMed ID: 21526262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogel-based microfluidic systems for co-culture of cells.
    Chen MC; Gupta M; Cheung KC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4848-51. PubMed ID: 19163802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective control of liver and kidney cells migration during organotypic cocultures inside fibronectin-coated rectangular silicone microchannels.
    Leclerc E; Baudoin R; Corlu A; Griscom L; Luc Duval J; Legallais C
    Biomaterials; 2007 Apr; 28(10):1820-9. PubMed ID: 17178157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ generation of tunable porosity gradients in hydrogel-based scaffolds for microfluidic cell culture.
    Al-Abboodi A; Tjeung R; Doran PM; Yeo LY; Friend J; Yik Chan PP
    Adv Healthc Mater; 2014 Oct; 3(10):1655-70. PubMed ID: 24711346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic fabrication of photo-responsive hydrogel capsules.
    Kim B; Soo Lee H; Kim J; Kim SH
    Chem Commun (Camb); 2013 Mar; 49(18):1865-7. PubMed ID: 23361355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel microfluidic co-culture system for investigation of bacterial cancer targeting.
    Hong JW; Song S; Shin JH
    Lab Chip; 2013 Aug; 13(15):3033-40. PubMed ID: 23743709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs.
    Sung JH; Shuler ML
    Lab Chip; 2009 May; 9(10):1385-94. PubMed ID: 19417905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell migration into scaffolds under co-culture conditions in a microfluidic platform.
    Chung S; Sudo R; Mack PJ; Wan CR; Vickerman V; Kamm RD
    Lab Chip; 2009 Jan; 9(2):269-75. PubMed ID: 19107284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform.
    Aung A; Theprungsirikul J; Lim HL; Varghese S
    Lab Chip; 2016 May; 16(10):1886-98. PubMed ID: 27097908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.