These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 28169526)
21. Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor. Li Y; Zhao X; Yu P; Zhang Q Langmuir; 2013 Jan; 29(1):493-500. PubMed ID: 23205664 [TBL] [Abstract][Full Text] [Related]
22. The pH-controlled morphology transition of polyaniline from nanofibers to nanospheres. Shi J; Wu Q; Li R; Zhu Y; Qin Y; Qiao C Nanotechnology; 2013 May; 24(17):175602. PubMed ID: 23571614 [TBL] [Abstract][Full Text] [Related]
23. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors. Sarker AK; Hong JD Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750 [TBL] [Abstract][Full Text] [Related]
24. Electrodeposition of Polyaniline on Tantalum: Redox Behavior, Morphology and Capacitive Properties. Gkili C; Deligiannakis K; Lappa E; Papoulia C; Sazou D Molecules; 2023 Oct; 28(21):. PubMed ID: 37959706 [TBL] [Abstract][Full Text] [Related]
25. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. Miao YE; Fan W; Chen D; Liu T ACS Appl Mater Interfaces; 2013 May; 5(10):4423-8. PubMed ID: 23586693 [TBL] [Abstract][Full Text] [Related]
26. Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline. Lei Z; Sun X; Wang H; Liu Z; Zhao XS ACS Appl Mater Interfaces; 2013 Aug; 5(15):7501-8. PubMed ID: 23848251 [TBL] [Abstract][Full Text] [Related]
27. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. Cho S; Shin KH; Jang J ACS Appl Mater Interfaces; 2013 Sep; 5(18):9186-93. PubMed ID: 24032539 [TBL] [Abstract][Full Text] [Related]
28. In Situ Growth of the Ni Liu X; Wang J; Yang G ACS Appl Mater Interfaces; 2018 Jun; 10(24):20688-20695. PubMed ID: 29807419 [TBL] [Abstract][Full Text] [Related]
29. Highly flexible binder-free core-shell nanofibrous electrode for lightweight electrochemical energy storage using recycled water bottles. Shi HH; Naguib HE Nanotechnology; 2016 Aug; 27(32):325402. PubMed ID: 27354434 [TBL] [Abstract][Full Text] [Related]
30. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors. Oh M; Kim S J Nanosci Nanotechnol; 2012 Jan; 12(1):519-24. PubMed ID: 22524013 [TBL] [Abstract][Full Text] [Related]
31. Comparative study on polyvinyl chloride film as flexible substrate for preparing free-standing polyaniline-based composite electrodes for supercapacitors. Wang H; Liu D; Du P; Wei W; Wang Q; Liu P J Colloid Interface Sci; 2017 Nov; 506():572-581. PubMed ID: 28759857 [TBL] [Abstract][Full Text] [Related]
32. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Wang R; Han M; Zhao Q; Ren Z; Guo X; Xu C; Hu N; Lu L Sci Rep; 2017 Mar; 7():44562. PubMed ID: 28291246 [TBL] [Abstract][Full Text] [Related]
33. Hierarchical composite polyaniline-(electrospun polystyrene) fibers applied to heavy metal remediation. Alcaraz-Espinoza JJ; Chávez-Guajardo AE; Medina-Llamas JC; Andrade CA; de Melo CP ACS Appl Mater Interfaces; 2015 Apr; 7(13):7231-40. PubMed ID: 25761543 [TBL] [Abstract][Full Text] [Related]
34. Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors. Liu C; Wang J; Li J; Zeng M; Luo R; Shen J; Sun X; Han W; Wang L ACS Appl Mater Interfaces; 2016 Mar; 8(11):7194-204. PubMed ID: 26942712 [TBL] [Abstract][Full Text] [Related]
35. Retarded saturation of the areal capacitance using 3D-aligned MnO Kim G; Ryu I; Yim S Sci Rep; 2017 Aug; 7(1):8260. PubMed ID: 28811614 [TBL] [Abstract][Full Text] [Related]
36. A facile method for synthesis of polyaniline nanospheres and effect of doping on their electrical conductivity. Neelgund GM; Oki A Polym Int; 2011 Sep; 60(9):1291-1295. PubMed ID: 21966097 [TBL] [Abstract][Full Text] [Related]
37. Highly porous structured polyaniline nanocomposites for scalable and flexible high-performance supercapacitors. Oh J; Kim YK; Lee JS; Jang J Nanoscale; 2019 Mar; 11(13):6462-6470. PubMed ID: 30892347 [TBL] [Abstract][Full Text] [Related]
38. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299 [TBL] [Abstract][Full Text] [Related]
39. Fabrication of Polypyrrole Hollow Nanospheres by Hard-Template Method for Supercapacitor Electrode Material. Hong R; Zhao X; Lu R; You M; Chen X; Yang X Molecules; 2024 May; 29(10):. PubMed ID: 38792192 [TBL] [Abstract][Full Text] [Related]
40. Platinum-nanoparticle-supported core--shell polymer nanospheres with unexpected water stability and facile further modification. Yuan C; Xu Y; Luo W; Zeng B; Qiu W; Liu J; Huang H; Dai L Nanotechnology; 2012 May; 23(17):175301. PubMed ID: 22481383 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]