These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28169536)

  • 1. Interactions of Organics within Hydrated Selective Layer of Reverse Osmosis Desalination Membrane: A Combined Experimental and Computational Study.
    Ghoufi A; Dražević E; Szymczyk A
    Environ Sci Technol; 2017 Mar; 51(5):2714-2719. PubMed ID: 28169536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeability of uncharged organic molecules in reverse osmosis desalination membranes.
    Dražević E; Košutić K; Svalina M; Catalano J
    Water Res; 2017 Jun; 116():13-22. PubMed ID: 28292676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes.
    Drazevic E; Bason S; Kosutic K; Freger V
    Environ Sci Technol; 2012 Mar; 46(6):3377-83. PubMed ID: 22260225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does hindered transport theory apply to desalination membranes?
    Dražević E; Košutić K; Kolev V; Freger V
    Environ Sci Technol; 2014 Oct; 48(19):11471-8. PubMed ID: 25137614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Kingsbury RS; Perry LA; Coronell O
    Environ Sci Technol; 2017 Feb; 51(4):2295-2303. PubMed ID: 28084076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes.
    Verliefde AR; Cornelissen ER; Heijman SG; Hoek EM; Amy GL; Van der Bruggen B; Van Dijkt JC
    Environ Sci Technol; 2009 Apr; 43(7):2400-6. PubMed ID: 19452893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties.
    Suzuki T; Tanaka R; Tahara M; Isamu Y; Niinae M; Lin L; Wang J; Luh J; Coronell O
    Water Res; 2016 Sep; 100():326-336. PubMed ID: 27214345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.
    Dražević E; Košutić K; Freger V
    Water Res; 2014 Feb; 49():444-52. PubMed ID: 24216230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater.
    Valentino L; Renkens T; Maugin T; Croué JP; Mariñas BJ
    Environ Sci Technol; 2015 Feb; 49(4):2301-9. PubMed ID: 25590510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of a polymeric reverse osmosis membrane.
    Harder E; Walters DE; Bodnar YD; Faibish RS; Roux B
    J Phys Chem B; 2009 Jul; 113(30):10177-82. PubMed ID: 19586002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer.
    Wang F; Zheng T; Xiong R; Wang P; Ma J
    Chemosphere; 2019 Oct; 233():524-531. PubMed ID: 31185336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Feed Water pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Armstrong MD; Grzebyk K; Vickers R; Coronell O
    Environ Sci Technol; 2021 Mar; 55(5):3250-3259. PubMed ID: 33600153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic factors in partitioning and rejection of organic compounds by polyamide composite membranes.
    Ben-David A; Oren Y; Freger V
    Environ Sci Technol; 2006 Nov; 40(22):7023-8. PubMed ID: 17154011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite.
    Inukai S; Cruz-Silva R; Ortiz-Medina J; Morelos-Gomez A; Takeuchi K; Hayashi T; Tanioka A; Araki T; Tejima S; Noguchi T; Terrones M; Endo M
    Sci Rep; 2015 Sep; 5():13562. PubMed ID: 26333385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.
    Liu YL; Wang XM; Yang HW; Xie YF
    Chemosphere; 2018 Jun; 200():36-47. PubMed ID: 29471167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations.
    Chen X; Boo C; Yip NY
    Water Res; 2021 Aug; 201():117311. PubMed ID: 34192614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance.
    Lind ML; Eumine Suk D; Nguyen TV; Hoek EM
    Environ Sci Technol; 2010 Nov; 44(21):8230-5. PubMed ID: 20942398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.