These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28169547)

  • 1. Thick-Shell CuInS
    Zang H; Li H; Makarov NS; Velizhanin KA; Wu K; Park YS; Klimov VI
    Nano Lett; 2017 Mar; 17(3):1787-1795. PubMed ID: 28169547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PbS/CdS Quantum Dot Room-Temperature Single-Emitter Spectroscopy Reaches the Telecom O and S Bands via an Engineered Stability.
    Krishnamurthy S; Singh A; Hu Z; Blake AV; Kim Y; Singh A; Dolgopolova EA; Williams DJ; Piryatinski A; Malko AV; Htoon H; Sykora M; Hollingsworth JA
    ACS Nano; 2021 Jan; 15(1):575-587. PubMed ID: 33381968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nearly suppressed photoluminescence blinking of small-sized, blue-green-orange-red emitting single CdSe-based core/gradient alloy shell/shell quantum dots: correlation between truncation time and photoluminescence quantum yield.
    Roy D; Mandal S; De CK; Kumar K; Mandal PK
    Phys Chem Chem Phys; 2018 Apr; 20(15):10332-10344. PubMed ID: 29610808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.
    Reid KR; McBride JR; Freymeyer NJ; Thal LB; Rosenthal SJ
    Nano Lett; 2018 Feb; 18(2):709-716. PubMed ID: 29282985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Narrow Intrinsic Line Widths and Electron-Phonon Coupling of InP Colloidal Quantum Dots.
    Berkinsky DB; Proppe AH; Utzat H; Krajewska CJ; Sun W; Šverko T; Yoo JJ; Chung H; Won YH; Kim T; Jang E; Bawendi MG
    ACS Nano; 2023 Feb; 17(4):3598-3609. PubMed ID: 36758155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple Synthesis of CuInS
    Li H; Jiang X; Wang A; Chu X; Du Z
    Front Chem; 2020; 8():669. PubMed ID: 33195004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual Spectral Diffusion of Single CuInS
    Hinterding SOM; Mangnus MJJ; Prins PT; Jöbsis HJ; Busatto S; Vanmaekelbergh D; de Mello Donega C; Rabouw FT
    Nano Lett; 2021 Jan; 21(1):658-665. PubMed ID: 33395305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template.
    Parveen S; Paul KK; Das R; Giri PK
    J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index.
    Chuang PH; Lin CC; Liu RS
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15379-87. PubMed ID: 25111960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rigid CuInS
    Liu Z; Hao C; Sun Y; Wang J; Dube L; Chen M; Dang W; Hu J; Li X; Chen O
    Nano Lett; 2024 May; 24(17):5342-5350. PubMed ID: 38630899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence Blinking and Biexciton Auger Recombination in Single Colloidal Quantum Dots with Sharp and Smooth Core/Shell Interfaces.
    Guo W; Tang J; Zhang G; Li B; Yang C; Chen R; Qin C; Hu J; Zhong H; Xiao L; Jia S
    J Phys Chem Lett; 2021 Jan; 12(1):405-412. PubMed ID: 33356280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots.
    Sun J; Ikezawa M; Wang X; Jing P; Li H; Zhao J; Masumoto Y
    Phys Chem Chem Phys; 2015 May; 17(18):11981-9. PubMed ID: 25728207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators.
    Zhu M; Li Y; Tian S; Xie Y; Zhao X; Gong X
    J Colloid Interface Sci; 2019 Jan; 534():509-517. PubMed ID: 30253352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I-III-VI
    Pinchetti V; Lorenzon M; McDaniel H; Lorenzi R; Meinardi F; Klimov VI; Brovelli S
    Nano Lett; 2017 Jul; 17(7):4508-4517. PubMed ID: 28613906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.
    Fisher AAE; Osborne MA
    ACS Nano; 2017 Aug; 11(8):7829-7840. PubMed ID: 28679040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS
    Xia C; Meeldijk JD; Gerritsen HC; de Mello Donega C
    Chem Mater; 2017 Jun; 29(11):4940-4951. PubMed ID: 28638177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-Dependent Photoluminescence of CdS/ZnS Core/Shell Quantum Dots for Temperature Sensors.
    Tang L; Zhang Y; Liao C; Guo Y; Lu Y; Xia Y; Liu Y
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRET-Based Analysis of AgInS
    Miropoltsev M; Kuznetsova V; Tkach A; Cherevkov S; Sokolova A; Osipova V; Gromova Y; Baranov M; Fedorov A; Gun'ko Y; Baranov A
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33302496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The composition effect on the optical properties of aqueous synthesized Cu-In-S and Zn-Cu-In-S quantum dot nanocrystals.
    Zhang B; Wang Y; Yang C; Hu S; Gao Y; Zhang Y; Wang Y; Demir HV; Liu L; Yong KT
    Phys Chem Chem Phys; 2015 Oct; 17(38):25133-41. PubMed ID: 26349413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectual Interface and Defect Engineering for Auger Recombination Suppression in Bright InP/ZnSeS/ZnS Quantum Dots.
    Lee Y; Jo DY; Kim T; Jo JH; Park J; Yang H; Kim D
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12479-12487. PubMed ID: 35238532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.