These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28170020)

  • 1. High-resolution structure of coexisting nanoscopic and microscopic lipid domains.
    Belička M; Weitzer A; Pabst G
    Soft Matter; 2017 Mar; 13(9):1823-1833. PubMed ID: 28170020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex biomembrane mimetics on the sub-nanometer scale.
    Heberle FA; Pabst G
    Biophys Rev; 2017 Aug; 9(4):353-373. PubMed ID: 28717925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ determination of structure and fluctuations of coexisting fluid membrane domains.
    Heftberger P; Kollmitzer B; Rieder AA; Amenitsch H; Pabst G
    Biophys J; 2015 Feb; 108(4):854-862. PubMed ID: 25692590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayer thickness mismatch controls domain size in model membranes.
    Heberle FA; Petruzielo RS; Pan J; Drazba P; Kučerka N; Standaert RF; Feigenson GW; Katsaras J
    J Am Chem Soc; 2013 May; 135(18):6853-9. PubMed ID: 23391155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partitioning of amphiphiles between coexisting ordered and disordered phases in two-phase lipid bilayer membranes.
    Mesquita RM; Melo E; Thompson TE; Vaz WL
    Biophys J; 2000 Jun; 78(6):3019-25. PubMed ID: 10827980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global small-angle X-ray scattering data analysis for multilamellar vesicles: the evolution of the scattering density profile model.
    Heftberger P; Kollmitzer B; Heberle FA; Pan J; Rappolt M; Amenitsch H; Kučerka N; Katsaras J; Pabst G
    J Appl Crystallogr; 2014 Feb; 47(Pt 1):173-180. PubMed ID: 24587787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thickness Mismatch of Coexisting Liquid Phases in Noncanonical Lipid Bilayers.
    Bleecker JV; Cox PA; Foster RN; Litz JP; Blosser MC; Castner DG; Keller SL
    J Phys Chem B; 2016 Mar; 120(10):2761-70. PubMed ID: 26890258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers.
    Wang TY; Silvius JR
    Biophys J; 2003 Jan; 84(1):367-78. PubMed ID: 12524290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models for randomly distributed nanoscopic domains on spherical vesicles.
    Anghel VNP; Bolmatov D; Katsaras J
    Phys Rev E; 2018 Jun; 97(6-1):062405. PubMed ID: 30011588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pulmonary surfactant protein SP-B on the micro- and nanostructure of phospholipid films.
    Cruz A; Vázquez L; Vélez M; Pérez-Gil J
    Biophys J; 2004 Jan; 86(1 Pt 1):308-20. PubMed ID: 14695272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries.
    Fastenberg ME; Shogomori H; Xu X; Brown DA; London E
    Biochemistry; 2003 Oct; 42(42):12376-90. PubMed ID: 14567699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing association of lipidated signaling proteins in heterogeneous membranes--partitioning into subdomains, lipid sorting, interfacial adsorption, and protein association.
    Weise K; Triola G; Janosch S; Waldmann H; Winter R
    Biochim Biophys Acta; 2010 Jul; 1798(7):1409-17. PubMed ID: 20025847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol.
    Quinn PJ; Wolf C
    Biochim Biophys Acta; 2009 Sep; 1788(9):1877-89. PubMed ID: 19616506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O; Pathak P; London E
    Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning of membrane-anchored DNA between coexisting lipid phases.
    Beales PA; Vanderlick TK
    J Phys Chem B; 2009 Oct; 113(42):13678-86. PubMed ID: 19827842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosecond lipid dynamics in membranes containing cholesterol.
    Armstrong CL; Häussler W; Seydel T; Katsaras J; Rheinstädter MC
    Soft Matter; 2014 Apr; 10(15):2600-11. PubMed ID: 24647350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous partitioning of water in coexisting liquid phases of lipid multilayers near 100% relative humidity.
    Ma Y; Ghosh SK; Bera S; Jiang Z; Schlepütz CM; Karapetrova E; Lurio LB; Sinha SK
    Phys Chem Chem Phys; 2016 Jan; 18(2):1225-32. PubMed ID: 26661405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential ability of cholesterol-enriched and gel phase domains to resist benzyl alcohol-induced fluidization in multilamellar lipid vesicles.
    Maula T; Westerlund B; Slotte JP
    Biochim Biophys Acta; 2009 Nov; 1788(11):2454-61. PubMed ID: 19766094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex roles of hybrid lipids in the composition, order, and size of lipid membrane domains.
    Hassan-Zadeh E; Baykal-Caglar E; Alwarawrah M; Huang J
    Langmuir; 2014 Feb; 30(5):1361-9. PubMed ID: 24456489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscopic properties of phospholipid vesicles with a contact angle between the membrane domains.
    Bozic B; Majhenc J
    Chemphyschem; 2009 Nov; 10(16):2862-70. PubMed ID: 19746504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.