These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 281714)

  • 1. Molecular nature of the complement lesion.
    Bhakdi S; Tranum-Jensen J
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5655-9. PubMed ID: 281714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complement lysis: evidence for an amphiphilic nature of the terminal membrane C5b-9 complex of human complement.
    Bhakdi S; Bjerrum OJ; Bhakdi-Lehnen B; Tranum-Jensen J
    J Immunol; 1978 Dec; 121(6):2526-32. PubMed ID: 569173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore.
    Bhakdi S; Tranum-Jensen J
    J Immunol; 1986 Apr; 136(8):2999-3005. PubMed ID: 3958488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular composition of the terminal membrane and fluid-phase C5b-9 complexes of rabbit complement. Absence of disulphide-bonded C9 dimers in the membrane complex.
    Bhakdi S; Tranum-Jensen J
    Biochem J; 1983 Mar; 209(3):753-61. PubMed ID: 6870789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complement lysis: the ultrastructure and orientation of the C5b-9 complex on target sheep erythrocyte membranes.
    Tranum-Jensen J; Bhakdi S; Bhakdi-Lehnen B; Bjerrum OJ; Speth V
    Scand J Immunol; 1978; 7(1):45-6. PubMed ID: 635472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of the terminal complement complex from target sheep erythrocyte membranes.
    Bhakdi S; Ey P; Bhakdi-Lehnen B
    Biochim Biophys Acta; 1976 Feb; 419(3):445-57. PubMed ID: 1247570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane attack complex of complement: generation of high-affinity phospholipid binding sites by fusion of five hydrophilic plasma proteins.
    Podack ER; Biesecker G; Müller-Eberhard HJ
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):897-901. PubMed ID: 284414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic transformation of SC5b-9 into an amphiphilic macromolecule resembling the C5b-9 membrane attack complex of complement.
    Bhakdi S; Bhakdi-Lehnen B; Tranum-Jensen J
    Immunology; 1979 Aug; 37(4):901-12. PubMed ID: 115783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a two-domain structure of the terminal membrane C5b-9 complex of human complement.
    Bhakdi S; Tranum-Jensen J
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5872-6. PubMed ID: 293689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-fracture analysis of the membrane lesion of human complement.
    Tranum-Jensen J; Bhakdi S
    J Cell Biol; 1983 Sep; 97(3):618-26. PubMed ID: 6309866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural events associated with the attachment of complement components to cell membranes in reactive lysis.
    Dourmashkin RR
    Immunology; 1978 Aug; 35(2):205-12. PubMed ID: 750370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal membrane C5b-9 complex of human complement: transition from an amphiphilic to a hydrophilic state through binding of the S protein from serum.
    Bhakdi S; Tranum-Jensen J
    J Cell Biol; 1982 Sep; 94(3):755-9. PubMed ID: 7130282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular weight of the membrane C5b-9 complex of human complement: characterization of the terminal complex as a C5b-9 monomer.
    Bhakdi S; Tranum-Jensen J
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1818-22. PubMed ID: 6940190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of complement components C5b-8 and C5b-9 on lipid bilayer membranes: visualization by freeze-etch electron microscopy.
    McCloskey MA; Dankert JR; Esser AF
    Biochemistry; 1989 Jan; 28(2):534-40. PubMed ID: 2713330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane channel-formation by five complement proteins.
    Müller-Eberhard HJ
    Biochem Soc Symp; 1985; 50():235-46. PubMed ID: 2428370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9.
    Rollins SA; Sims PJ
    J Immunol; 1990 May; 144(9):3478-83. PubMed ID: 1691760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of cytolysis by complement: evidence on insertion of C5b and C7 subunits of the C5b,6,7 complex into phospholipid bilayers of erythrocyte membranes.
    Hammer CH; Nicholson A; Mayer MM
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):5076-80. PubMed ID: 1061092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of complement cytolysis and the concept of channel-forming proteins.
    Bhakdi S; Tranum-Jensen J
    Philos Trans R Soc Lond B Biol Sci; 1984 Sep; 306(1129):311-24. PubMed ID: 6149576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement.
    Michaels DW; Abramovitz AS; Hammer CH; Mayer MM
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2852-6. PubMed ID: 1066698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane attack complex of complement: distribution of subunits between the hydrocarbon phase of target membranes and water.
    Podack ER; Stoffel W; Esser AF; Müller-Eberhard HJ
    Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4544-8. PubMed ID: 6270682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.