These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Poly(ε-Caprolactone)/Poly(Lactic Acid) Blends Compatibilized by Peroxide Initiators: Comparison of Two Strategies. Przybysz-Romatowska M; Haponiuk J; Formela K Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963365 [TBL] [Abstract][Full Text] [Related]
4. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends. Zhao H; Zhao G J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249 [TBL] [Abstract][Full Text] [Related]
5. Compatibilization effect of poly(epsilon-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(epsilon-caprolactone) blends. Na YH; He Y; Shuai X; Kikkawa Y; Doi Y; Inoue Y Biomacromolecules; 2002; 3(6):1179-86. PubMed ID: 12425654 [TBL] [Abstract][Full Text] [Related]
6. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. Zhu B; Bai T; Wang P; Wang Y; Liu C; Shen C Int J Biol Macromol; 2020 Jun; 153():1272-1280. PubMed ID: 31758994 [TBL] [Abstract][Full Text] [Related]
7. Selective localization of multiwalled carbon nanotubes in poly(epsilon-caprolactone)/polylactide blend. Wu D; Zhang Y; Zhang M; Yu W Biomacromolecules; 2009 Feb; 10(2):417-24. PubMed ID: 19140730 [TBL] [Abstract][Full Text] [Related]
8. Morphology and properties of soy protein and polylactide blends. Zhang J; Jiang L; Zhu L; Jane JL; Mungara P Biomacromolecules; 2006 May; 7(5):1551-61. PubMed ID: 16677038 [TBL] [Abstract][Full Text] [Related]
9. Non-conventional injection molding of poly(lactide) and poly(epsilon-caprolactone) intended for orthopedic applications. Altpeter H; Bevis MJ; Grijpma DW; Feijen J J Mater Sci Mater Med; 2004 Feb; 15(2):175-84. PubMed ID: 15330053 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization. Broström J; Boss A; Chronakis IS Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708 [TBL] [Abstract][Full Text] [Related]
11. Melt Crystallization Behavior and Crystalline Morphology of Polylactide/Poly(ε-caprolactone) Blends Compatibilized by Lactide-Caprolactone Copolymer. Zhang C; Lan Q; Zhai T; Nie S; Luo J; Yan W Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961106 [TBL] [Abstract][Full Text] [Related]
12. Effect of the Addition of Nano-Silica and Poly(ε-caprolactone) on the Mechanical and Thermal Properties of Poly(lactic acid) Blends and Possible Application in Embossing Process. Mahović Poljaček S; Priselac D; Tomašegović T; Elesini US; Leskovšek M; Leskovac M Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432988 [TBL] [Abstract][Full Text] [Related]
13. Effect of Ethyl Ester L-Lysine Triisocyanate addition to produce reactive PLA/PCL bio-polyester blends for biomedical applications. Visco A; Nocita D; Giamporcaro A; Ronca S; Forte G; Pistone A; Espro C J Mech Behav Biomed Mater; 2017 Apr; 68():308-317. PubMed ID: 28236696 [TBL] [Abstract][Full Text] [Related]
14. Super-Toughened Poly(lactic Acid) with Poly(ε-caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending. Hou AL; Qu JP Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052419 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of cell affinity on poly(L-lactide) and poly(epsilon-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. Ajami-Henriquez D; Rodríguez M; Sabino M; Castillo RV; Müller AJ; Boschetti-de-Fierro A; Abetz C; Abetz V; Dubois P J Biomed Mater Res A; 2008 Nov; 87(2):405-17. PubMed ID: 18186046 [TBL] [Abstract][Full Text] [Related]
16. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: tung oil anhydride. Xiong Z; Li C; Ma S; Feng J; Yang Y; Zhang R; Zhu J Carbohydr Polym; 2013 Jun; 95(1):77-84. PubMed ID: 23618242 [TBL] [Abstract][Full Text] [Related]
17. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers. Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335 [TBL] [Abstract][Full Text] [Related]