BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 28174333)

  • 1. Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.
    Chan MY; Alhazmi FH; Park DC; Savalia NK; Wig GS
    J Neurosci; 2017 Mar; 37(10):2734-2745. PubMed ID: 28174333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging relates to a disproportionately weaker functional architecture of brain networks during rest and task states.
    Hughes C; Faskowitz J; Cassidy BS; Sporns O; Krendl AC
    Neuroimage; 2020 Apr; 209():116521. PubMed ID: 31926282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale intrinsic connectivity is consistent across varying task demands.
    Kieliba P; Madugula S; Filippini N; Duff EP; Makin TR
    PLoS One; 2019; 14(4):e0213861. PubMed ID: 30970031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related differences in resting-state and task-based network characteristics and cognition: a lifespan sample.
    Zhang H; Gertel VH; Cosgrove AL; Diaz MT
    Neurobiol Aging; 2021 May; 101():262-272. PubMed ID: 33602583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comprehensive Analysis of Connectivity and Aging Over the Adult Life Span.
    Archer JA; Lee A; Qiu A; Chen SH
    Brain Connect; 2016 Mar; 6(2):169-85. PubMed ID: 26652914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state.
    Dørum ES; Kaufmann T; Alnæs D; Andreassen OA; Richard G; Kolskår KK; Nordvik JE; Westlye LT
    Neuroimage; 2017 Mar; 148():364-372. PubMed ID: 28111190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults.
    Mowinckel AM; Espeseth T; Westlye LT
    Neuroimage; 2012 Nov; 63(3):1364-73. PubMed ID: 22992492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connectome-based models predict attentional control in aging adults.
    Fountain-Zaragoza S; Samimy S; Rosenberg MD; Prakash RS
    Neuroimage; 2019 Feb; 186():1-13. PubMed ID: 30394324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-specific differences in transient brain activity at rest are associated with age-related reductions in motor performance.
    Monteiro TS; King BR; Seer C; Mantini D; Swinnen SP
    Neuroimage; 2022 May; 252():119025. PubMed ID: 35202812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Functional Relevance of Task-State Functional Connectivity.
    Cole MW; Ito T; Cocuzza C; Sanchez-Romero R
    J Neurosci; 2021 Mar; 41(12):2684-2702. PubMed ID: 33542083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders.
    Ferreira LK; Regina AC; Kovacevic N; Martin Mda G; Santos PP; Carneiro Cde G; Kerr DS; Amaro E; McIntosh AR; Busatto GF
    Cereb Cortex; 2016 Sep; 26(9):3851-65. PubMed ID: 26315689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related differences in network flexibility and segregation at rest and during motor performance.
    Monteiro TS; King BR; Zivari Adab H; Mantini D; Swinnen SP
    Neuroimage; 2019 Jul; 194():93-104. PubMed ID: 30872046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catecholaminergic Neuromodulation Shapes Intrinsic MRI Functional Connectivity in the Human Brain.
    van den Brink RL; Pfeffer T; Warren CM; Murphy PR; Tona KD; van der Wee NJ; Giltay E; van Noorden MS; Rombouts SA; Donner TH; Nieuwenhuis S
    J Neurosci; 2016 Jul; 36(30):7865-76. PubMed ID: 27466332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.
    Fukushima M; Betzel RF; He Y; van den Heuvel MP; Zuo XN; Sporns O
    Brain Struct Funct; 2018 Apr; 223(3):1091-1106. PubMed ID: 29090337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.
    Yin D; Liu W; Zeljic K; Wang Z; Lv Q; Fan M; Cheng W; Wang Z
    J Neurosci; 2016 Sep; 36(39):10060-74. PubMed ID: 27683903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correspondence between evoked and intrinsic functional brain network configurations.
    Bolt T; Nomi JS; Rubinov M; Uddin LQ
    Hum Brain Mapp; 2017 Apr; 38(4):1992-2007. PubMed ID: 28052450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional connectivity of intrinsic cognitive networks during resting state and task performance in preadolescent children.
    Jiang P; Vuontela V; Tokariev M; Lin H; Aronen ET; Ma Y; Carlson S
    PLoS One; 2018; 13(10):e0205690. PubMed ID: 30332489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.