BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28174585)

  • 21. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.
    Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R
    BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptomic analysis of rice in response to iron deficiency and excess.
    Bashir K; Hanada K; Shimizu M; Seki M; Nakanishi H; Nishizawa NK
    Rice (N Y); 2014 Dec; 7(1):18. PubMed ID: 26224551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New aspects of iron-copper crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant spl7 in Arabidopsis thaliana.
    Kastoori Ramamurthy R; Xiang Q; Hsieh EJ; Liu K; Zhang C; Waters BM
    Metallomics; 2018 Dec; 10(12):1824-1840. PubMed ID: 30460953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes.
    Kobayashi T; Itai RN; Ogo Y; Kakei Y; Nakanishi H; Takahashi M; Nishizawa NK
    Plant J; 2009 Dec; 60(6):948-61. PubMed ID: 19737364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency.
    Chen C; Cao Q; Jiang Q; Li J; Yu R; Shi G
    BMC Plant Biol; 2019 Jan; 19(1):35. PubMed ID: 30665365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis.
    Liu W; Wu T; Li Q; Zhang X; Xu X; Li T; Han Z; Wang Y
    Sci Rep; 2018 Jan; 8(1):1068. PubMed ID: 29348657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.
    Eroglu S; Meier B; von Wirén N; Peiter E
    Plant Physiol; 2016 Feb; 170(2):1030-45. PubMed ID: 26668333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-Wide Association Analysis Reveals the Genetic Basis of Iron-Deficiency Stress Tolerance in Maize.
    Xu J; Xu W; Chen X; Zhu H; Fu X; Yu F
    Front Plant Sci; 2022; 13():878809. PubMed ID: 35720580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis.
    García MJ; Lucena C; Romera FJ; Alcántara E; Pérez-Vicente R
    J Exp Bot; 2010 Sep; 61(14):3885-99. PubMed ID: 20627899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements.
    Gayomba SR; Zhai Z; Jung HI; Vatamaniuk OK
    Front Plant Sci; 2015; 6():716. PubMed ID: 26442030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The plasma membrane proteome of maize roots grown under low and high iron conditions.
    Hopff D; Wienkoop S; Lüthje S
    J Proteomics; 2013 Oct; 91():605-18. PubMed ID: 23353019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.
    Liu W; Li Q; Wang Y; Wu T; Yang Y; Zhang X; Han Z; Xu X
    Biochem Biophys Res Commun; 2017 Sep; 491(3):862-868. PubMed ID: 28390898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).
    Wang B; Wei H; Xue Z; Zhang WH
    Ann Bot; 2017 Apr; 119(6):945-956. PubMed ID: 28065924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.
    Zhou C; Liu Z; Zhu L; Ma Z; Wang J; Zhu J
    Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27792144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural Variation in Physiological Responses of Tunisian
    Ben Abdallah H; Mai HJ; Slatni T; Fink-Straube C; Abdelly C; Bauer P
    Front Plant Sci; 2018; 9():1383. PubMed ID: 30333841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants.
    Romera FJ; García MJ; Lucena C; Martínez-Medina A; Aparicio MA; Ramos J; Alcántara E; Angulo M; Pérez-Vicente R
    Front Plant Sci; 2019; 10():287. PubMed ID: 30915094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two soybean bHLH factors regulate response to iron deficiency.
    Li L; Gao W; Peng Q; Zhou B; Kong Q; Ying Y; Shou H
    J Integr Plant Biol; 2018 Jul; 60(7):608-622. PubMed ID: 29575545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of ethylene in responses of plants to nitrogen availability.
    Khan MI; Trivellini A; Fatma M; Masood A; Francini A; Iqbal N; Ferrante A; Khan NA
    Front Plant Sci; 2015; 6():927. PubMed ID: 26579172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ironing out the issues: integrated approaches to understanding iron homeostasis in plants.
    Samira R; Stallmann A; Massenburg LN; Long TA
    Plant Sci; 2013 Sep; 210():250-9. PubMed ID: 23849132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions.
    Ogo Y; Itai RN; Nakanishi H; Kobayashi T; Takahashi M; Mori S; Nishizawa NK
    Plant J; 2007 Aug; 51(3):366-77. PubMed ID: 17559517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.