These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28174585)

  • 41. The basic helix-loop-helix transcription factor, bHLH11 functions in the iron-uptake system in Arabidopsis thaliana.
    Tanabe N; Noshi M; Mori D; Nozawa K; Tamoi M; Shigeoka S
    J Plant Res; 2019 Jan; 132(1):93-105. PubMed ID: 30417276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insights into Resistance to Fe Deficiency Stress from a Comparative Study of
    Boamponsem GA; Leung DWM; Lister C
    Front Plant Sci; 2017; 8():1581. PubMed ID: 28955367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling.
    Verbon EH; Trapet PL; Kruijs S; Temple-Boyer-Dury C; Rouwenhorst TG; Pieterse CMJ
    Front Plant Sci; 2019; 10():909. PubMed ID: 31354776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative Physiological and Transcriptomic Analyses Reveal Altered Fe-Deficiency Responses in Tomato Epimutant
    Chen WW; Zhu HH; Wang JY; Han GH; Huang RN; Hong YG; Yang JL
    Front Plant Sci; 2021; 12():796893. PubMed ID: 35126421
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction Between Sulfur and Iron in Plants.
    Astolfi S; Celletti S; Vigani G; Mimmo T; Cesco S
    Front Plant Sci; 2021; 12():670308. PubMed ID: 34354720
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency.
    Li H; Wang L; Yang ZM
    Gene; 2015 Jan; 554(1):16-24. PubMed ID: 25300251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa.
    Valentinuzzi F; Pii Y; Vigani G; Lehmann M; Cesco S; Mimmo T
    J Exp Bot; 2015 Oct; 66(20):6483-95. PubMed ID: 26188206
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptional and physiological analyses of short-term Iron deficiency response in apple seedlings provide insight into the regulation involved in photosynthesis.
    Wang YX; Hu Y; Zhu YF; Baloch AW; Jia XM; Guo AX
    BMC Genomics; 2018 Jun; 19(1):461. PubMed ID: 29902966
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complementary Evaluation of Iron Deficiency Root Responses to Assess the Effectiveness of Different Iron Foliar Applications for Chlorosis Remediation.
    Fuentes M; Bacaicoa E; Rivero M; Zamarreño ÁM; García-Mina JM
    Front Plant Sci; 2018; 9():351. PubMed ID: 29616062
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrative analysis of hexaploid wheat roots identifies signature components during iron starvation.
    Kaur G; Shukla V; Kumar A; Kaur M; Goel P; Singh P; Shukla A; Meena V; Kaur J; Singh J; Mantri S; Rouached H; Pandey AK
    J Exp Bot; 2019 Nov; 70(21):6141-6161. PubMed ID: 31738431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis.
    Zhang J; Liu B; Li M; Feng D; Jin H; Wang P; Liu J; Xiong F; Wang J; Wang HB
    Plant Cell; 2015 Mar; 27(3):787-805. PubMed ID: 25794933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative expression profiling reveals a role of the root apoplast in local phosphate response.
    Hoehenwarter W; Mönchgesang S; Neumann S; Majovsky P; Abel S; Müller J
    BMC Plant Biol; 2016 Apr; 16():106. PubMed ID: 27121119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toward new perspectives on the interaction of iron and sulfur metabolism in plants.
    Forieri I; Wirtz M; Hell R
    Front Plant Sci; 2013; 4():357. PubMed ID: 24106494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Response of the Root Apex in Plant Adaptation to Iron Heterogeneity in Soil.
    Li G; Kronzucker HJ; Shi W
    Front Plant Sci; 2016; 7():344. PubMed ID: 27047521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-omic profiling to assess the effect of iron starvation in
    Jiménez-Munguía I; Calderón-Santiago M; Rodríguez-Franco A; Priego-Capote F; Rodríguez-Ortega MJ
    PeerJ; 2018; 6():e4966. PubMed ID: 29915696
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Editorial: Metallic micronutrient homeostasis in plants, volume II.
    Roschzttardtz H; Gomez-Casati D; Dubos C; Quintana J
    Front Plant Sci; 2023; 14():1329190. PubMed ID: 38107009
    [No Abstract]   [Full Text] [Related]  

  • 57. Iron, the Limiting Element in a Chlorosis: Part I. Availability and Utilization of Iron Dependent upon Nutrition and Plant Species.
    Brown JC; Holmes RS
    Plant Physiol; 1955 Sep; 30(5):451-7. PubMed ID: 16654808
    [No Abstract]   [Full Text] [Related]  

  • 58. Effect of the Nonpathogenic Strain
    Núñez-Cano J; Romera FJ; Prieto P; García MJ; Sevillano-Caño J; Agustí-Brisach C; Pérez-Vicente R; Ramos J; Lucena C
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687390
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants.
    Romera FJ; García MJ; Lucena C; Angulo M; Pérez-Vicente R
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Loss of OPT3 function decreases phloem copper levels and impairs crosstalk between copper and iron homeostasis and shoot-to-root signaling in Arabidopsis thaliana.
    Chia JC; Yan J; Rahmati Ishka M; Faulkner MM; Simons E; Huang R; Smieska L; Woll A; Tappero R; Kiss A; Jiao C; Fei Z; Kochian LV; Walker E; Piñeros M; Vatamaniuk OK
    Plant Cell; 2023 May; 35(6):2157-2185. PubMed ID: 36814393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.