These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28174601)

  • 21. Added-Value Chemicals from Lignin Oxidation.
    Costa CAE; Vega-Aguilar CA; Rodrigues AE
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium
    Kumar M; Verma S; Gazara RK; Kumar M; Pandey A; Verma PK; Thakur IS
    Biotechnol Biofuels; 2018; 11():154. PubMed ID: 29991962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics.
    Weiland F; Barton N; Kohlstedt M; Becker J; Wittmann C
    Metab Eng; 2023 Jan; 75():153-169. PubMed ID: 36563956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1.
    Sainsbury PD; Hardiman EM; Ahmad M; Otani H; Seghezzi N; Eltis LD; Bugg TD
    ACS Chem Biol; 2013 Oct; 8(10):2151-6. PubMed ID: 23898824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioprospecting Microbial Diversity for Lignin Valorization: Dry and Wet Screening Methods.
    Gonçalves CC; Bruce T; Silva COG; Fillho EXF; Noronha EF; Carlquist M; Parachin NS
    Front Microbiol; 2020; 11():1081. PubMed ID: 32582068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic production of a novel polymer feedstock, 3-carboxy muconate, from vanillin.
    Gosling A; Fowler SJ; O'Shea MS; Straffon M; Dumsday G; Zachariou M
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):107-16. PubMed ID: 21221570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GFP reporter screens for the engineering of amino acid degrading enzymes from libraries expressed in bacteria.
    Paley O; Agnello G; Cantor J; Yoo TH; Georgiou G; Stone E
    Methods Mol Biol; 2013; 978():31-44. PubMed ID: 23423887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor.
    Suzuki Y; Otsuka Y; Araki T; Kamimura N; Masai E; Nakamura M; Katayama Y
    Bioresour Technol; 2021 Oct; 337():125489. PubMed ID: 34320768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering the metabolic distribution of vanillin in Rhodococcus opacus during lignin valorization.
    Zhou H; Xu Z; Cai C; Li J; Jin M
    Bioresour Technol; 2022 Mar; 347():126348. PubMed ID: 34798253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization.
    Varman AM; He L; Follenfant R; Wu W; Wemmer S; Wrobel SA; Tang YJ; Singh S
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):E5802-E5811. PubMed ID: 27634497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis.
    Weng C; Peng X; Han Y
    Biotechnol Biofuels; 2021 Apr; 14(1):84. PubMed ID: 33812391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of lignin-derived phenolic compounds to cellulase.
    Qin L; Li WC; Liu L; Zhu JQ; Li X; Li BZ; Yuan YJ
    Biotechnol Biofuels; 2016; 9():70. PubMed ID: 27006689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of Vanillin During Lignin Valorization Under Alkaline Oxidation.
    Zhu Y; Liu J; Liao Y; Lv W; Ma L; Wang C
    Top Curr Chem (Cham); 2018 Jul; 376(4):29. PubMed ID: 29967927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-Cell Biosensors Aid Exploration of Vanillin Transmembrane Transport.
    Zhang X; He Y; Wu Z; Liu G; Tao Y; Jin JM; Chen W; Tang SY
    J Agric Food Chem; 2021 Mar; 69(10):3114-3123. PubMed ID: 33666081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production.
    Vilela N; Tomazetto G; Gonçalves TA; Sodré V; Persinoti GF; Moraes EC; de Oliveira AHC; da Silva SN; Fill TP; Damasio A; Squina FM
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):5. PubMed ID: 36624471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.
    Galkin MV; Samec JS
    ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction.
    Gao J; Du M; Zhao J; Yue Zhang ; Xu N; Du H; Ju J; Wei L; Liu J
    Metab Eng; 2022 Sep; 73():144-157. PubMed ID: 35921946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering grass biomass for sustainable and enhanced bioethanol production.
    Mohapatra S; Mishra SS; Bhalla P; Thatoi H
    Planta; 2019 Aug; 250(2):395-412. PubMed ID: 31236698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin.
    Fleige C; Meyer F; Steinbüchel A
    Appl Environ Microbiol; 2016 Jun; 82(11):3410-3419. PubMed ID: 27037121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights.
    Priyadarshinee R; Kumar A; Mandal T; Dasguptamandal D
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):23349-23368. PubMed ID: 27687765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.