These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 28176043)
1. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function. Indo HP; Hawkins CL; Nakanishi I; Matsumoto KI; Matsui H; Suenaga S; Davies MJ; St Clair DK; Ozawa T; Majima HJ Handb Exp Pharmacol; 2017; 240():439-456. PubMed ID: 28176043 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. Hughes G; Murphy MP; Ledgerwood EC Biochem J; 2005 Jul; 389(Pt 1):83-9. PubMed ID: 15727562 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Verschoor ML; Wilson LA; Singh G Can J Physiol Pharmacol; 2010 Mar; 88(3):204-19. PubMed ID: 20393586 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Park J; Min JS; Kim B; Chae UB; Yun JW; Choi MS; Kong IK; Chang KT; Lee DS Neurosci Lett; 2015 Jan; 584():191-6. PubMed ID: 25459294 [TBL] [Abstract][Full Text] [Related]
5. Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death. Lluis JM; Buricchi F; Chiarugi P; Morales A; Fernandez-Checa JC Cancer Res; 2007 Aug; 67(15):7368-77. PubMed ID: 17671207 [TBL] [Abstract][Full Text] [Related]
6. 4-Hydroxynonenal enhances MMP-2 production in vascular smooth muscle cells via mitochondrial ROS-mediated activation of the Akt/NF-kappaB signaling pathways. Lee SJ; Seo KW; Yun MR; Bae SS; Lee WS; Hong KW; Kim CD Free Radic Biol Med; 2008 Nov; 45(10):1487-92. PubMed ID: 18805481 [TBL] [Abstract][Full Text] [Related]
7. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Armstrong JS; Steinauer KK; Hornung B; Irish JM; Lecane P; Birrell GW; Peehl DM; Knox SJ Cell Death Differ; 2002 Mar; 9(3):252-63. PubMed ID: 11859408 [TBL] [Abstract][Full Text] [Related]
8. Manganese superoxide dismutase: a regulator of T cell activation-induced oxidative signaling and cell death. Kamiński MM; Röth D; Sass S; Sauer SW; Krammer PH; Gülow K Biochim Biophys Acta; 2012 May; 1823(5):1041-52. PubMed ID: 22429591 [TBL] [Abstract][Full Text] [Related]
9. Reactive oxygen species mediate dopamine-induced signaling in renal proximal tubule cells. Acquier AB; Mori Sequeiros García M; Gorostizaga AB; Paz C; Mendez CF FEBS Lett; 2013 Oct; 587(19):3254-60. PubMed ID: 23994527 [TBL] [Abstract][Full Text] [Related]
10. Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS. Zepeda AB; Pessoa A; Castillo RL; Figueroa CA; Pulgar VM; Farías JG Cell Biochem Funct; 2013 Aug; 31(6):451-9. PubMed ID: 23760768 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the activation of nuclear factor kappaB by mitochondrial respiratory function: evidence for the reactive oxygen species-dependent and -independent pathways. Higuchi M; Manna SK; Sasaki R; Aggarwal BB Antioxid Redox Signal; 2002 Dec; 4(6):945-55. PubMed ID: 12573143 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial signals to nucleus regulate estrogen-induced cell growth. Felty Q; Roy D Med Hypotheses; 2005; 64(1):133-41. PubMed ID: 15533631 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial signal lacking manganese superoxide dismutase failed to prevent cell death by reoxygenation following hypoxia in a human pancreatic cancer cell line, KP4. Hirai F; Motoori S; Kakinuma S; Tomita K; Indo HP; Kato H; Yamaguchi T; Yen HC; St Clair DK; Nagano T; Ozawa T; Saisho H; Majima HJ Antioxid Redox Signal; 2004 Jun; 6(3):523-35. PubMed ID: 15130279 [TBL] [Abstract][Full Text] [Related]
15. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS. Hu Z; Yu F; Gong P; Qiu Y; Zhou W; Cui Y; Li J; Chen H Toxicol Appl Pharmacol; 2014 Apr; 276(2):95-103. PubMed ID: 24530511 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosis. Hansen JM; Zhang H; Jones DP Toxicol Sci; 2006 Jun; 91(2):643-50. PubMed ID: 16574777 [TBL] [Abstract][Full Text] [Related]
17. The H(+)-ATP synthase: a gate to ROS-mediated cell death or cell survival. Martínez-Reyes I; Cuezva JM Biochim Biophys Acta; 2014 Jul; 1837(7):1099-112. PubMed ID: 24685430 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Rigoulet M; Yoboue ED; Devin A Antioxid Redox Signal; 2011 Feb; 14(3):459-68. PubMed ID: 20649461 [TBL] [Abstract][Full Text] [Related]
19. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ji LL; Gomez-Cabrera MC; Vina J Ann N Y Acad Sci; 2006 May; 1067():425-35. PubMed ID: 16804022 [TBL] [Abstract][Full Text] [Related]