These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 28176118)
1. The function of the cercal sensory system in escape behavior of the cave cricket Troglophilus neglectus Krauss. Schrader Š Pflugers Arch; 2000 Jan; 439(Suppl 1):r187-r189. PubMed ID: 28176118 [TBL] [Abstract][Full Text] [Related]
2. The function of the cercal sensory system in escape behavior of the cave cricket Troglophilus neglectus Krauss. Schrader S Pflugers Arch; 2000; 439(3 Suppl):R187-9. PubMed ID: 10653187 [TBL] [Abstract][Full Text] [Related]
3. Directional sensitivity of wind-sensitive giant interneurons in the cave cricket Troglophilus neglectus. Schrader S; Horseman G; Cokl A J Exp Zool; 2002 Jan; 292(1):73-81. PubMed ID: 11754023 [TBL] [Abstract][Full Text] [Related]
4. Behavioral analyses of wind-evoked escape of the cricket, Gryllodes sigillatus. Kanou M; Konishi A; Suenaga R Zoolog Sci; 2006 Apr; 23(4):359-64. PubMed ID: 16702769 [TBL] [Abstract][Full Text] [Related]
5. Synchronous firing by specific pairs of cercal giant interneurons in crickets encodes wind direction. Yono O; Shimozawa T Biosystems; 2008 Sep; 93(3):218-25. PubMed ID: 18550269 [TBL] [Abstract][Full Text] [Related]
6. Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket. Schöneich S; Hedwig B J Neurophysiol; 2015 Jan; 113(1):390-9. PubMed ID: 25318763 [TBL] [Abstract][Full Text] [Related]
7. The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution. Strauß J; Stritih N; Lakes-Harlan R R Soc Open Sci; 2014 Oct; 1(2):140240. PubMed ID: 26064547 [TBL] [Abstract][Full Text] [Related]
8. The thorax of the cave cricket Troglophilus neglectus: anatomical adaptations in an ancient wingless insect lineage (Orthoptera: Rhaphidophoridae). Leubner F; Hörnschemeyer T; Bradler S BMC Evol Biol; 2016 Feb; 16():39. PubMed ID: 26891721 [TBL] [Abstract][Full Text] [Related]
9. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. Hedwig B J Neurophysiol; 2000 Feb; 83(2):712-22. PubMed ID: 10669487 [TBL] [Abstract][Full Text] [Related]
10. Role of the fat body in the cave crickets Troglophilus cavicola and Troglophilus neglectus (Rhaphidophoridae, Saltatoria) during overwintering. Lipovšek S; Novak T; Janžekovič F; Pabst MA Arthropod Struct Dev; 2011 Jan; 40(1):54-63. PubMed ID: 20868768 [TBL] [Abstract][Full Text] [Related]
11. Central connections of receptors on rotated and exchanged cerci of crickets. Palka J; Schubiger M Proc Natl Acad Sci U S A; 1975 Mar; 72(3):966-9. PubMed ID: 1055395 [TBL] [Abstract][Full Text] [Related]
12. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Stritih N; Stumpner A Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145 [TBL] [Abstract][Full Text] [Related]
13. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer). Jacob PF; Hedwig B J Neurophysiol; 2015 Nov; 114(5):2649-60. PubMed ID: 26334014 [TBL] [Abstract][Full Text] [Related]
14. Cercal sensory system and giant interneurons in Gryllodes sigillatus. Kanou M; Nawae M; Kuroishi H Zoolog Sci; 2006 Apr; 23(4):365-73. PubMed ID: 16702770 [TBL] [Abstract][Full Text] [Related]
15. Functional recoveries of giant interneurons in the early period after unilateral cercal ablation in the cricket Gryllus bimaculatus. Kanou M; Kuroishi H Zoolog Sci; 2008 Sep; 25(9):931-6. PubMed ID: 19267603 [TBL] [Abstract][Full Text] [Related]
16. Danger detection and escape behaviour in wood crickets. Dupuy F; Casas J; Body M; Lazzari CR J Insect Physiol; 2011 Jul; 57(7):865-71. PubMed ID: 21439965 [TBL] [Abstract][Full Text] [Related]
17. Cartesian representation of stimulus direction: parallel processing by two sets of giant interneurons in the cockroach. Kolton L; Camhi JM J Comp Physiol A; 1995 May; 176(5):691-702. PubMed ID: 7769568 [TBL] [Abstract][Full Text] [Related]
18. Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. Ogawa H; Baba Y; Oka K J Neurobiol; 2001 Mar; 46(4):301-13. PubMed ID: 11180157 [TBL] [Abstract][Full Text] [Related]
19. Functional changes of cricket giant interneurons caused by chronic unilateral cercal ablation during postembryonic development. Kanou M; Matsuura T; Minami N; Takanashi T Zoolog Sci; 2004 Jan; 21(1):7-14. PubMed ID: 14745098 [TBL] [Abstract][Full Text] [Related]
20. Connectivity pattern of the cercal-to-giant interneuron system of the American cockroach. Daley DL; Camhi JM J Neurophysiol; 1988 Oct; 60(4):1350-68. PubMed ID: 3193161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]