These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28176871)

  • 1. The earliest molecular response to stretch of insect flight muscle as revealed by fast X-ray diffraction recording.
    Iwamoto H
    Sci Rep; 2017 Feb; 7():42272. PubMed ID: 28176871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast x-ray recordings reveal dynamic action of contractile and regulatory proteins in stretch-activated insect flight muscle.
    Iwamoto H; Inoue K; Yagi N
    Biophys J; 2010 Jul; 99(1):184-92. PubMed ID: 20655846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle.
    Perz-Edwards RJ; Irving TC; Baumann BA; Gore D; Hutchinson DC; Kržič U; Porter RL; Ward AB; Reedy MK
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):120-5. PubMed ID: 21148419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle.
    Tregear RT; Edwards RJ; Irving TC; Poole KJ; Reedy MC; Schmitz H; Towns-Andrews E; Reedy MK
    Biophys J; 1998 Mar; 74(3):1439-51. PubMed ID: 9512040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.
    Iwamoto H
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29899245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backward movements of cross-bridges by application of stretch and by binding of MgADP to skeletal muscle fibers in the rigor state as studied by x-ray diffraction.
    Takezawa Y; Kim DS; Ogino M; Sugimoto Y; Kobayashi T; Arata T; Wakabayashi K
    Biophys J; 1999 Apr; 76(4):1770-83. PubMed ID: 10096877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics of cyclically contracting insect flight muscle in vivo.
    Dickinson M; Farman G; Frye M; Bekyarova T; Gore D; Maughan D; Irving T
    Nature; 2005 Jan; 433(7023):330-4. PubMed ID: 15662427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative model for Schädler's isometric oscillations in insect flight and cardiac muscle.
    Smith DA
    J Muscle Res Cell Motil; 1991 Oct; 12(5):455-65. PubMed ID: 1939609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The myosin filament superlattice in the flight muscles of flies: A-band lattice optimisation for stretch-activation?
    Squire JM; Bekyarova T; Farman G; Gore D; Rajkumar G; Knupp C; Lucaveche C; Reedy MC; Reedy MK; Irving TC
    J Mol Biol; 2006 Sep; 361(5):823-38. PubMed ID: 16887144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron tomography of fast frozen, stretched rigor fibers reveals elastic distortions in the myosin crossbridges.
    Liu J; Reedy MC; Goldman YE; Franzini-Armstrong C; Sasaki H; Tregear RT; Lucaveche C; Winkler H; Baumann BA; Squire JM; Irving TC; Reedy MK; Taylor KA
    J Struct Biol; 2004 Sep; 147(3):268-82. PubMed ID: 15450296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spatially explicit model of muscle contraction explains a relationship between activation phase, power and ATP utilization in insect flight.
    Tanner BC; Regnier M; Daniel TL
    J Exp Biol; 2008 Jan; 211(Pt 2):180-6. PubMed ID: 18165245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asynchronous muscle: a primer.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2000 Sep; 203(Pt 18):2713-22. PubMed ID: 10952872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes of actin-bound myosin heads after a quick length change in frog skeletal muscle.
    Yagi N; Iwamoto H; Wakayama J; Inoue K
    Biophys J; 2005 Aug; 89(2):1150-64. PubMed ID: 15894638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The long C-terminal extension of insect flight muscle-specific troponin-I isoform is not required for stretch activation.
    Iwamoto H
    Biochem Biophys Res Commun; 2013 Feb; 431(1):47-51. PubMed ID: 23291173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for unique structural change of thin filaments upon calcium activation of insect flight muscle.
    Iwamoto H
    J Mol Biol; 2009 Jul; 390(1):99-111. PubMed ID: 19433094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An exceptionally fast actomyosin reaction powers insect flight muscle.
    Swank DM; Vishnudas VK; Maughan DW
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17543-7. PubMed ID: 17085600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo x-ray diffraction of indirect flight muscle from Drosophila melanogaster.
    Irving TC; Maughan DW
    Biophys J; 2000 May; 78(5):2511-5. PubMed ID: 10777748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in isometrically contracting insect flight muscle trapped following a mechanical perturbation.
    Wu S; Liu J; Reedy MC; Perz-Edwards RJ; Tregear RT; Winkler H; Franzini-Armstrong C; Sasaki H; Lucaveche C; Goldman YE; Reedy MK; Taylor KA
    PLoS One; 2012; 7(6):e39422. PubMed ID: 22761792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements.
    Brunello E; Bianco P; Piazzesi G; Linari M; Reconditi M; Panine P; Narayanan T; Helsby WI; Irving M; Lombardi V
    J Physiol; 2006 Dec; 577(Pt 3):971-84. PubMed ID: 16990403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.