These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 28176878)
1. Cofactor recycling for co-production of 1,3-propanediol and glutamate by metabolically engineered Corynebacterium glutamicum. Huang J; Wu Y; Wu W; Zhang Y; Liu D; Chen Z Sci Rep; 2017 Feb; 7():42246. PubMed ID: 28176878 [TBL] [Abstract][Full Text] [Related]
2. Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways. Guo J; Cao Y; Liu H; Zhang R; Xian M; Liu H Appl Microbiol Biotechnol; 2019 Mar; 103(6):2597-2608. PubMed ID: 30719552 [TBL] [Abstract][Full Text] [Related]
3. High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Maervoet VE; De Maeseneire SL; Avci FG; Beauprez J; Soetaert WK; De Mey M Microb Cell Fact; 2016 Jan; 15():23. PubMed ID: 26822953 [TBL] [Abstract][Full Text] [Related]
4. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose. Li Z; Dong Y; Liu Y; Cen X; Liu D; Chen Z Metab Eng; 2022 Mar; 70():79-88. PubMed ID: 35038553 [TBL] [Abstract][Full Text] [Related]
5. Glycerol and environmental factors: effects on 1,3-propanediol production and NAD(+) regeneration in Lactobacillus panis PM1. Kang TS; Korber DR; Tanaka T J Appl Microbiol; 2013 Oct; 115(4):1003-11. PubMed ID: 23795775 [TBL] [Abstract][Full Text] [Related]
6. High-level co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Metabolic engineering and process optimization. Zhang Y; Yun J; Zabed HM; Dou Y; Zhang G; Zhao M; Taherzadeh MJ; Ragauskas A; Qi X Bioresour Technol; 2023 Feb; 369():128438. PubMed ID: 36470488 [TBL] [Abstract][Full Text] [Related]
7. Cofactor Engineering for Enhanced Production of Diols by Klebsiella pneumoniae From Co-Substrate. Wang M; Zhou Y; Tan T Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28834346 [TBL] [Abstract][Full Text] [Related]
8. Multi-modular engineering of 1,3-propanediol biosynthesis system in Klebsiella pneumoniae from co-substrate. Wang M; Wang G; Zhang T; Fan L; Tan T Appl Microbiol Biotechnol; 2017 Jan; 101(2):647-657. PubMed ID: 27761634 [TBL] [Abstract][Full Text] [Related]
9. 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Przystałowska H; Zeyland J; Szymanowska-Powałowska D; Szalata M; Słomski R; Lipiński D Microbiol Res; 2015 Feb; 171():1-7. PubMed ID: 25644946 [TBL] [Abstract][Full Text] [Related]
10. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Hirokawa Y; Maki Y; Hanai T Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670 [TBL] [Abstract][Full Text] [Related]
11. A genome-reduced Corynebacterium glutamicum derivative discloses a hidden pathway relevant for 1,2-propanediol production. Siebert D; Glawischnig E; Wirth MT; Vannahme M; Salazar-Quirós Á; Weiske A; Saydam E; Möggenried D; Wendisch VF; Blombach B Microb Cell Fact; 2024 Feb; 23(1):62. PubMed ID: 38402147 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose. Lama S; Seol E; Park S Bioresour Technol; 2017 Dec; 245(Pt B):1542-1550. PubMed ID: 28549809 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Pseudomonas denitrificans for the 1,3-propanediol production from glycerol. Zhou S; Lama S; Sankaranarayanan M; Park S Bioresour Technol; 2019 Nov; 292():121933. PubMed ID: 31404755 [TBL] [Abstract][Full Text] [Related]
14. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering. Wischral D; Zhang J; Cheng C; Lin M; De Souza LMG; Pessoa FLP; Pereira N; Yang ST Bioresour Technol; 2016 Jul; 212():100-110. PubMed ID: 27085150 [TBL] [Abstract][Full Text] [Related]
15. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum. Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556 [TBL] [Abstract][Full Text] [Related]
16. Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Lange J; Müller F; Bernecker K; Dahmen N; Takors R; Blombach B Biotechnol Biofuels; 2017; 10():277. PubMed ID: 29201141 [TBL] [Abstract][Full Text] [Related]
17. The effects of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate on the production of 1,3-propanediol from crude glycerol by microbial consortium. Jiang L; Dai J; Sun Y; Xiu Z Bioprocess Biosyst Eng; 2018 Aug; 41(8):1079-1088. PubMed ID: 29651644 [TBL] [Abstract][Full Text] [Related]
18. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol. Yang J; Zhu Y; Men Y; Sun S; Zeng Y; Zhang Y; Sun Y; Ma Y J Agric Food Chem; 2016 Dec; 64(50):9497-9505. PubMed ID: 27998065 [TBL] [Abstract][Full Text] [Related]
19. The effects of dissolved oxygen level on the distribution of 1,3-propanediol and 2,3-butanediol produced from glycerol by an isolated indigenous Klebsiella sp. Ana-WS5. Yen HW; Li FT; Chang JS Bioresour Technol; 2014 Feb; 153():374-8. PubMed ID: 24369989 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution. Hirokawa Y; Matsuo S; Hamada H; Matsuda F; Hanai T Microb Cell Fact; 2017 Nov; 16(1):212. PubMed ID: 29178875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]