These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 28176878)
21. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping. Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966 [TBL] [Abstract][Full Text] [Related]
22. Engineering of a hybrid route to enhance shikimic acid production in Corynebacterium glutamicum. Zhang B; Jiang CY; Liu YM; Liu C; Liu SJ Biotechnol Lett; 2015 Sep; 37(9):1861-8. PubMed ID: 25967037 [TBL] [Abstract][Full Text] [Related]
23. 1,3-Propanediol production potential of Clostridium saccharobutylicum NRRL B-643. Gungormusler M; Gonen C; Ozdemir G; Azbar N N Biotechnol; 2010 Dec; 27(6):782-8. PubMed ID: 20647065 [TBL] [Abstract][Full Text] [Related]
24. Co-production of 1,3 propanediol and long-chain alkyl esters from crude glycerol. Mangayil R; Efimova E; Konttinen J; Santala V N Biotechnol; 2019 Nov; 53():81-89. PubMed ID: 31302257 [TBL] [Abstract][Full Text] [Related]
25. Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae. Oh BR; Lee SM; Heo SY; Seo JW; Kim CH Microb Cell Fact; 2018 Jun; 17(1):92. PubMed ID: 29907119 [TBL] [Abstract][Full Text] [Related]
26. Metabolic engineering of Lactobacillus reuteri DSM 20,016 for improved 1,3-propanediol production from glycerol. Singh K; Ainala SK; Park S Bioresour Technol; 2021 Oct; 338():125590. PubMed ID: 34298333 [TBL] [Abstract][Full Text] [Related]
27. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466 [TBL] [Abstract][Full Text] [Related]
28. Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol. Yang B; Liang S; Liu H; Liu J; Cui Z; Wen J Bioresour Technol; 2018 Nov; 267():599-607. PubMed ID: 30056370 [TBL] [Abstract][Full Text] [Related]
29. 1,3-propanediol production with Citrobacter werkmanii DSM17579: effect of a dhaD knock-out. Maervoet VE; De Maeseneire SL; Avci FG; Beauprez J; Soetaert WK; De Mey M Microb Cell Fact; 2014 May; 13():70. PubMed ID: 24885849 [TBL] [Abstract][Full Text] [Related]
30. Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition. Lin R; Liu H; Hao J; Cheng K; Liu D Biotechnol Lett; 2005 Nov; 27(22):1755-9. PubMed ID: 16314966 [TBL] [Abstract][Full Text] [Related]
31. Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation. Wang C; Cai H; Chen Z; Zhou Z Biotechnol Lett; 2016 Oct; 38(10):1791-7. PubMed ID: 27395064 [TBL] [Abstract][Full Text] [Related]
32. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Feng J; Quan Y; Gu Y; Liu F; Huang X; Shen H; Dang Y; Cao M; Gao W; Lu X; Wang Y; Song C; Wang S Microb Cell Fact; 2017 May; 16(1):88. PubMed ID: 28532451 [TBL] [Abstract][Full Text] [Related]
33. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Chen T; Zhu N; Xia H Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202 [TBL] [Abstract][Full Text] [Related]
34. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum. Shi F; Zhang M; Li Y World J Microbiol Biotechnol; 2017 Jun; 33(6):122. PubMed ID: 28534111 [TBL] [Abstract][Full Text] [Related]
35. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Niimi S; Suzuki N; Inui M; Yukawa H Appl Microbiol Biotechnol; 2011 Jun; 90(5):1721-9. PubMed ID: 21424269 [TBL] [Abstract][Full Text] [Related]
36. Efficient Production of 1,3-Propanediol from Diverse Carbohydrates via a Non-natural Pathway Using 3-Hydroxypropionic Acid as an Intermediate. Li Z; Wu Z; Cen X; Liu Y; Zhang Y; Liu D; Chen Z ACS Synth Biol; 2021 Mar; 10(3):478-486. PubMed ID: 33625207 [TBL] [Abstract][Full Text] [Related]
37. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386 [TBL] [Abstract][Full Text] [Related]
38. Small Current but Highly Productive Synthesis of 1,3-Propanediol from Glycerol by an Electrode-Driven Metabolic Shift in Klebsiella pneumoniae L17. Kim C; Lee JH; Baek J; Kong DS; Na JG; Lee J; Sundstrom E; Park S; Kim JR ChemSusChem; 2020 Feb; 13(3):564-573. PubMed ID: 31808287 [TBL] [Abstract][Full Text] [Related]
39. Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Durgapal M; Kumar V; Yang TH; Lee HJ; Seung D; Park S Bioresour Technol; 2014 May; 159():223-31. PubMed ID: 24657752 [TBL] [Abstract][Full Text] [Related]
40. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Park SH; Kim HU; Kim TY; Park JS; Kim SS; Lee SY Nat Commun; 2014 Aug; 5():4618. PubMed ID: 25091334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]