BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28176905)

  • 1. Effect of roll compaction on granule size distribution of microcrystalline cellulose-mannitol mixtures: computational intelligence modeling and parametric analysis.
    Kazemi P; Khalid MH; Pérez Gago A; Kleinebudde P; Jachowicz R; Szlęk J; Mendyk A
    Drug Des Devel Ther; 2017; 11():241-251. PubMed ID: 28176905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCC-mannitol mixtures after roll compaction/dry granulation: percolation thresholds for ribbon microhardness and granule size distribution.
    Pérez Gago A; Kleinebudde P
    Pharm Dev Technol; 2017 Sep; 22(6):764-774. PubMed ID: 27055487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.
    Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J
    Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of roll-compaction and milling conditions on granules and tablet properties.
    Perez-Gandarillas L; Perez-Gago A; Mazor A; Kleinebudde P; Lecoq O; Michrafy A
    Eur J Pharm Biopharm; 2016 Sep; 106():38-49. PubMed ID: 27237776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction.
    Souihi N; Dumarey M; Wikström H; Tajarobi P; Fransson M; Svensson O; Josefson M; Trygg J
    Int J Pharm; 2013 Apr; 447(1-2):47-61. PubMed ID: 23434544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.
    Mosig J; Kleinebudde P
    J Pharm Sci; 2015 Mar; 104(3):1108-18. PubMed ID: 25558976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational intelligence models to predict porosity of tablets using minimum features.
    Khalid MH; Kazemi P; Perez-Gandarillas L; Michrafy A; Szlęk J; Jachowicz R; Mendyk A
    Drug Des Devel Ther; 2017; 11():193-202. PubMed ID: 28138223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting.
    Khorasani M; Amigo JM; Sun CC; Bertelsen P; Rantanen J
    Eur J Pharm Biopharm; 2015 Jun; 93():293-302. PubMed ID: 25917640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of density distributions in roller-compacted ribbons using micro-indentation and X-ray micro-computed tomography.
    Miguélez-Morán AM; Wu CY; Dong H; Seville JP
    Eur J Pharm Biopharm; 2009 May; 72(1):173-82. PubMed ID: 19130881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relevance of granule fragmentation on reduced tabletability of granules from ductile or brittle materials produced by roll compaction/dry granulation.
    Skelbæk-Pedersen AL; Vilhelmsen TK; Rantanen J; Kleinebudde P
    Int J Pharm; 2021 Jan; 592():120035. PubMed ID: 33152477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of roll compaction design, process parameters, and material deformation behaviour on ribbon relative density.
    Csordas K; Wiedey R; Kleinebudde P
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1295-1306. PubMed ID: 29484952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roll compaction of mannitol: compactability study of crystalline and spray-dried grades.
    Wagner CM; Pein M; Breitkreutz J
    Int J Pharm; 2013 Sep; 453(2):416-22. PubMed ID: 23742975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties.
    Herting MG; Kleinebudde P
    Int J Pharm; 2007 Jun; 338(1-2):110-8. PubMed ID: 17324537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic recovery in roll compaction simulation.
    Keizer HL; Kleinebudde P
    Int J Pharm; 2020 Jan; 573():118810. PubMed ID: 31678522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of terahertz pulsed imaging in characterising density distribution of roll-compacted ribbons.
    Zhang J; Pei C; Schiano S; Heaps D; Wu CY
    Eur J Pharm Biopharm; 2016 Sep; 106():20-5. PubMed ID: 26826401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation.
    Herting MG; Kleinebudde P
    Eur J Pharm Biopharm; 2008 Sep; 70(1):372-9. PubMed ID: 18511247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population balance modelling of ribbon milling with a new mass-based breakage function.
    Olaleye B; Pozza F; Wu CY; Liu LX
    Int J Pharm; 2019 Nov; 571():118765. PubMed ID: 31610282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of feed material properties on the milling of pharmaceutical ribbons: A PBM analysis.
    Olaleye B; Wu CY; Liu LX
    Int J Pharm; 2020 Nov; 590():119954. PubMed ID: 33039493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical analysis of industrial-scale roller compactor 'Freund TF-MINI model'.
    Sajjia M; Albadarin AB; Walker G
    Int J Pharm; 2016 Nov; 513(1-2):453-463. PubMed ID: 27651327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of functionalized particle structure on roll compaction/dry granulation and tableting of calcium carbonate.
    Grote S; Kleinebudde P
    Int J Pharm; 2018 Jun; 544(1):235-241. PubMed ID: 29689365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.