BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 28176989)

  • 1. Variations of thermoelectric performance by electric fields in bilayer MX
    Wang RN; Dong GY; Wang SF; Fu GS; Wang JL
    Phys Chem Chem Phys; 2017 Feb; 19(8):5797-5805. PubMed ID: 28176989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralow lattice thermal conductivity and dramatically enhanced thermoelectric properties of monolayer InSe induced by an external electric field.
    Chang Z; Yuan K; Sun Z; Zhang X; Gao Y; Qin G; Tang D
    Phys Chem Chem Phys; 2021 Jun; 23(24):13633-13646. PubMed ID: 34116567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric properties of monolayer MSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure of merit.
    Ding G; Gao GY; Huang Z; Zhang W; Yao K
    Nanotechnology; 2016 Sep; 27(37):375703. PubMed ID: 27487270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in
    Zou C; Lei C; Zou D; Liu Y
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twin-driven thermoelectric figure-of-merit enhancement of Bi2Te3 nanowires.
    Shin HS; Jeon SG; Yu J; Kim YS; Park HM; Song JY
    Nanoscale; 2014 Jun; 6(11):6158-65. PubMed ID: 24788482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium.
    Zhang Q; Cao F; Lukas K; Liu W; Esfarjani K; Opeil C; Broido D; Parker D; Singh DJ; Chen G; Ren Z
    J Am Chem Soc; 2012 Oct; 134(42):17731-8. PubMed ID: 23025440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si.
    Neophytou N; Zianni X; Kosina H; Frabboni S; Lorenzi B; Narducci D
    Nanotechnology; 2013 May; 24(20):205402. PubMed ID: 23598565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms.
    Han MK; Jin Y; Lee DH; Kim SJ
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29072613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin-Deep Aspect of Thermopower in Bi
    Lee C; Park T; Shim JH; Whangbo MH
    Acc Chem Res; 2022 Oct; 55(19):2811-2820. PubMed ID: 36129235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3.
    Ohta H; Kim S; Mune Y; Mizoguchi T; Nomura K; Ohta S; Nomura T; Nakanishi Y; Ikuhara Y; Hirano M; Hosono H; Koumoto K
    Nat Mater; 2007 Feb; 6(2):129-34. PubMed ID: 17237790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilayer MSe
    Yan P; Gao GY; Ding GQ; Qin D
    RSC Adv; 2019 Apr; 9(22):12394-12403. PubMed ID: 35515840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric response of single quintuple layer sodium copper chalcogenides persisting at high temperature.
    Huang Y; Zhong X; Feng Z; Lin S; Yuan H; Chen H
    Phys Chem Chem Phys; 2023 Apr; 25(14):10082-10089. PubMed ID: 36974477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and thermoelectric properties of Zn and Se double substituted tetrahedrite.
    Tippireddy S; Chetty R; Raut KK; Naik MH; Mukharjee PK; Jain M; Nath R; Wojciechowski K; Mallik RC
    Phys Chem Chem Phys; 2018 Nov; 20(45):28667-28677. PubMed ID: 30406779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An impurity intermediate band due to Pb doping induced promising thermoelectric performance of Ca5In2Sb6.
    Feng Z; Wang Y; Yan Y; Zhang G; Yang J; Zhang J; Wang C
    Phys Chem Chem Phys; 2015 Jun; 17(23):15156-64. PubMed ID: 25991513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of vacancy-doped neodymium telluride for thermoelectric applications.
    Gomez SJ; Cheikh D; Vo T; Von Allmen P; Lee K; Wood M; Snyder GJ; Dunn BS; Fleurial JP; Bux SK
    Chem Mater; 2019 Jun; 31(12):4460-4468. PubMed ID: 31942089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structure and thermoelectric properties of Mo-based dichalcogenide monolayers locally and randomly modified by substitutional atoms.
    Vallinayagam M; Posselt M; Chandra S
    RSC Adv; 2020 Nov; 10(70):43035-43044. PubMed ID: 35514882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles prediction of large thermoelectric efficiency in superionic Li
    Haque E; Cazorla C; Hossain MA
    Phys Chem Chem Phys; 2020 Jan; 22(2):878-889. PubMed ID: 31844875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Thermoelectric Performance in Two-Dimensional Janus Monolayer Material WS-X (
    Patel A; Singh D; Sonvane Y; Thakor PB; Ahuja R
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46212-46219. PubMed ID: 32931245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.