These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 28176993)

  • 1. Spectroscopic evidence that Li doping creates shallow V
    Lv J; Liu Y
    Phys Chem Chem Phys; 2017 Feb; 19(8):5806-5812. PubMed ID: 28176993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the VZn-NO-H complex in the p-type conductivity in ZnO.
    Amini MN; Saniz R; Lamoen D; Partoens B
    Phys Chem Chem Phys; 2015 Feb; 17(7):5485-9. PubMed ID: 25620352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescence and positron annihilation spectroscopic investigation on a H(+) irradiated ZnO single crystal.
    Sarkar A; Chakrabarti M; Sanyal D; Bhowmick D; Dechoudhury S; Chakrabarti A; Rakshit T; Ray SK
    J Phys Condens Matter; 2012 Aug; 24(32):325503, 1-9. PubMed ID: 22790024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable electronic and magnetic properties of defective g-ZnO monolayer doping with non-metallic elements.
    Wen J; Shi M; Lin P; Chen G; Zhang J
    J Mol Model; 2024 Jun; 30(7):214. PubMed ID: 38884859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Codoping and Interstitial Deactivation in the Control of Amphoteric Li Dopant in ZnO for the Realization of p-Type TCOs.
    Catellani A; Calzolari A
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors.
    Wang Q; Yan Y; Zeng Y; Lu Y; Chen L; Jiang Y
    Sci Rep; 2016 Jun; 6():27341. PubMed ID: 27263856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host.
    Shestakov MV; Tikhomirov VK; Kirilenko D; Kuznetsov AS; Chibotaru LF; Baranov AN; Van Tendeloo G; Moshchalkov VV
    Opt Express; 2011 Aug; 19(17):15955-64. PubMed ID: 21934959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of point defect formation and self-compensation in indium doped ZnO nanorods by STM and STS.
    González-Carrazco A; Herrera-Zaldívar M; Pal U
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6598-602. PubMed ID: 19205247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of defect luminescence in Ga-doped ZnO nanoparticles.
    Zhu W; Kitamura S; Boffelli M; Marin E; Della Gaspera E; Sturaro M; Martucci A; Pezzotti G
    Phys Chem Chem Phys; 2016 Apr; 18(14):9586-93. PubMed ID: 26996752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a Nitrogen-related acceptor in ZnO nanowires.
    Stehr JE; Chen SL; Chen WM; Cai L; Shen S; Buyanova IA
    Nanoscale; 2019 Jun; 11(22):10921-10926. PubMed ID: 31139799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman and photoluminescence spectroscopic detection of surface-bound Li(+)O2(-) defect sites in Li-doped ZnO nanocrystals derived from molecular precursors.
    Kirste R; Aksu Y; Wagner MR; Khachadorian S; Jana S; Driess M; Thomsen C; Hoffmann A
    Chemphyschem; 2011 Apr; 12(6):1189-95. PubMed ID: 21433242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films.
    Shinde SS; Bhosale CH; Rajpure KY
    J Photochem Photobiol B; 2013 Mar; 120():1-9. PubMed ID: 23416707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiative recombination mechanisms in individual wurtzite ZnSe nanowires with a defect-free single-crystalline microstructure.
    Saxena A; Pan Q; Ruda HE
    Nanoscale; 2013 Apr; 5(7):2875-82. PubMed ID: 23446447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Luminescent Inhomogeneity and the Distribution of Zinc Vacancy-Related Acceptor-Like Defects in N-Doped ZnO Microrods.
    Yao Z; Tang K; Xu Z; Ye J; Zhu S; Gu S
    Nanoscale Res Lett; 2016 Dec; 11(1):511. PubMed ID: 27878574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrashort and metastable doping of the ZnO surface by photoexcited defects.
    Gierster L; Vempati S; Stähler J
    Faraday Discuss; 2022 Sep; 237(0):58-79. PubMed ID: 35705141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-engineered modulation on the electronic properties of phosphorous-doped ZnO.
    Lu YB; Dai Y; Wei W; Zhu Y; Huang B
    Chemphyschem; 2013 Dec; 14(17):3916-24. PubMed ID: 24288285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods.
    Panigrahy B; Aslam M; Bahadur D
    Nanotechnology; 2012 Mar; 23(11):115601. PubMed ID: 22370332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p-Type conductivity in N-doped ZnO: the role of the N(Zn)-V(O) complex.
    Liu L; Xu J; Wang D; Jiang M; Wang S; Li B; Zhang Z; Zhao D; Shan CX; Yao B; Shen DZ
    Phys Rev Lett; 2012 May; 108(21):215501. PubMed ID: 23003277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-compensation in arsenic doping of CdTe.
    Ablekim T; Swain SK; Yin WJ; Zaunbrecher K; Burst J; Barnes TM; Kuciauskas D; Wei SH; Lynn KG
    Sci Rep; 2017 Jul; 7(1):4563. PubMed ID: 28676701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-selective dependence of room temperature ferromagnetism induced by hierarchical ZnO nanostructures.
    Motaung DE; Mhlongo GH; Nkosi SS; Malgas GF; Mwakikunga BW; Coetsee E; Swart HC; Abdallah HM; Moyo T; Ray SS
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8981-95. PubMed ID: 24896749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.