These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 28177017)
1. Surface shear viscosity as a macroscopic probe of amyloid fibril formation at a fluid interface. Balaraj VS; Zeng PC; Sanford SP; McBride SA; Raghunandan A; Lopez JM; Hirsa AH Soft Matter; 2017 Mar; 13(9):1780-1787. PubMed ID: 28177017 [TBL] [Abstract][Full Text] [Related]
2. Effects of Shear Rate and Protein Concentration on Amyloidogenesis via Interfacial Shear. Adam JA; Middlestead HR; Debono NE; Hirsa AH J Phys Chem B; 2021 Sep; 125(36):10355-10363. PubMed ID: 34478304 [TBL] [Abstract][Full Text] [Related]
3. Shear-induced amyloid fibrillization: the role of inertia. McBride SA; Sanford SP; Lopez JM; Hirsa AH Soft Matter; 2016 Apr; 12(14):3461-7. PubMed ID: 26956731 [TBL] [Abstract][Full Text] [Related]
4. Coupling between protein-laden films and a shearing bulk flow. Azadani AN; Lopez JM; Hirsa AH J Colloid Interface Sci; 2008 Jun; 322(1):79-86. PubMed ID: 18374937 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Human and Bovine Insulin Amyloidogenesis under Uniform Shear. McBride SA; Tilger CF; Sanford SP; Tessier PM; Hirsa AH J Phys Chem B; 2015 Aug; 119(33):10426-33. PubMed ID: 26225416 [TBL] [Abstract][Full Text] [Related]
6. Bridging the gap between the nanostructural organization and macroscopic interfacial rheology of amyloid fibrils at liquid interfaces. Jordens S; Rühs PA; Sieber C; Isa L; Fischer P; Mezzenga R Langmuir; 2014 Aug; 30(33):10090-7. PubMed ID: 25100189 [TBL] [Abstract][Full Text] [Related]
7. Amyloidogenesis via interfacial shear in a containerless biochemical reactor aboard the International Space Station. McMackin P; Adam J; Griffin S; Hirsa A NPJ Microgravity; 2022 Sep; 8(1):41. PubMed ID: 36127358 [TBL] [Abstract][Full Text] [Related]
8. Detecting the early onset of shear-induced fibril formation of insulin in situ. Webster GT; Dusting J; Balabani S; Blanch EW J Phys Chem B; 2011 Mar; 115(11):2617-26. PubMed ID: 21348502 [TBL] [Abstract][Full Text] [Related]
10. Morphological development of beta(1-40) amyloid fibrils. Blackley HK; Patel N; Davies MC; Roberts CJ; Tendler SJ; Wilkinson MJ; Williams PM Exp Neurol; 1999 Aug; 158(2):437-43. PubMed ID: 10415150 [TBL] [Abstract][Full Text] [Related]
11. Probing Shear Thinning Behaviors of IgG Molecules at the Air-Water Interface via Rheological Methods. Gleason C; Yee C; Masatani P; Middaugh CR; Vance A Langmuir; 2016 Jan; 32(2):496-504. PubMed ID: 26673996 [TBL] [Abstract][Full Text] [Related]
12. Protein displacement by monoglyceride at the air-water interface evaluated by surface shear rheology combined with Brewster angle microscopy. Patino JM; Sánchez CC; Fernández MC; Niño MR J Phys Chem B; 2007 Jul; 111(28):8305-13. PubMed ID: 17580860 [TBL] [Abstract][Full Text] [Related]
13. Polysorbate 20 prevents the precipitation of a monoclonal antibody during shear. Patapoff TW; Esue O Pharm Dev Technol; 2009; 14(6):659-64. PubMed ID: 19883255 [TBL] [Abstract][Full Text] [Related]
14. Surfactant-Influenced Gas-Liquid Interfaces: Nonlinear Equation of State and Finite Surface Viscosities. Lopez JM; Hirsa AH J Colloid Interface Sci; 2000 Sep; 229(2):575-583. PubMed ID: 10985838 [TBL] [Abstract][Full Text] [Related]
15. Lysozyme stability and amyloid fibrillization dependence on Hofmeister anions in acidic pH. Poniková S; Antošová A; Demjén E; Sedláková D; Marek J; Varhač R; Gažová Z; Sedlák E J Biol Inorg Chem; 2015 Sep; 20(6):921-33. PubMed ID: 26077813 [TBL] [Abstract][Full Text] [Related]
16. Shear flow promotes amyloid-{beta} fibrilization. Dunstan DE; Hamilton-Brown P; Asimakis P; Ducker W; Bertolini J Protein Eng Des Sel; 2009 Dec; 22(12):741-6. PubMed ID: 19850675 [TBL] [Abstract][Full Text] [Related]
17. Shear characteristics, miscibility, and topography of sodium caseinate-monoglyceride mixed films at the air-water interface. Rodríguez Patino JM; Carrera Sánchez C Biomacromolecules; 2004; 5(5):2065-72. PubMed ID: 15360325 [TBL] [Abstract][Full Text] [Related]
18. Adsorption at liquid interfaces induces amyloid fibril bending and ring formation. Jordens S; Riley EE; Usov I; Isa L; Olmsted PD; Mezzenga R ACS Nano; 2014 Nov; 8(11):11071-9. PubMed ID: 25338060 [TBL] [Abstract][Full Text] [Related]
19. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy. Loksztejn A; Dzwolak W J Mol Biol; 2010 Jan; 395(3):643-55. PubMed ID: 19891974 [TBL] [Abstract][Full Text] [Related]
20. Effect of agitation on the peptide fibrillization: Alzheimer's amyloid-β peptide 1-42 but not amylin and insulin fibrils can grow under quiescent conditions. Tiiman A; Noormägi A; Friedemann M; Krishtal J; Palumaa P; Tõugu V J Pept Sci; 2013 Jun; 19(6):386-91. PubMed ID: 23609985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]