These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 28177078)
1. Genetic Basis Underlying Rapid Evolution of an Introduced Insect Ophraella communa (Coleoptera: Chrysomelidae): Heritability of Photoperiodic Response. Tanaka K; Murata K Environ Entomol; 2017 Feb; 46(1):167-173. PubMed ID: 28177078 [No Abstract] [Full Text] [Related]
2. Genetic variation in flight activity of Ophraella communa (Coleoptera: Chrysomelidae): heritability estimated by artificial selection. Tanaka K Environ Entomol; 2009 Feb; 38(1):266-73. PubMed ID: 19791623 [TBL] [Abstract][Full Text] [Related]
3. A genetic analysis of diapause in crosses of a southern and a northern strain of the cabbage beetle Colaphellus bowringi (Coleoptera: chrysomelidae). Chen C; Xiao L; He HM; Xu J; Xue FS Bull Entomol Res; 2014 Oct; 104(5):586-91. PubMed ID: 24818998 [TBL] [Abstract][Full Text] [Related]
4. Factors affecting flight activity of Ophraella communa (Coleoptera: Chrysomelidae), an exotic insect in Japan. Tanaka K; Yamanaka T Environ Entomol; 2009 Feb; 38(1):235-41. PubMed ID: 19791619 [TBL] [Abstract][Full Text] [Related]
5. Divergence in Photoperiod Responses of a Classical Biological Control Agent, Galerucella calmariensis (Coleoptera: Chrysomelidae), Across a Climatic and Latitudinal Gradient. Wepprich T; Grevstad FS Environ Entomol; 2021 Apr; 50(2):306-316. PubMed ID: 33346818 [TBL] [Abstract][Full Text] [Related]
6. GENETIC CONSTRAINTS AND THE PHYLOGENY OF INSECT-PLANT ASSOCIATIONS: RESPONSES OF OPHRAELLA COMMUNA (COLEOPTERA: CHRYSOMELIDAE) TO HOST PLANTS OF ITS CONGENERS. Futuyma DJ; Keese MC; Scheffer SJ Evolution; 1993 Jun; 47(3):888-905. PubMed ID: 28567894 [TBL] [Abstract][Full Text] [Related]
7. Chromosome-level genome assembly of an oligophagous leaf beetle Ophraella communa (Coleoptera: Chrysomelidae). Wang YT; Zhang Y; Ma C; Ma WH; Cao LJ; Chen JC; Song W; Yang JF; Gao XY; Chen HS; Tian ZY; Desneux N; Wei SJ; Zhou ZS Sci Data; 2024 Jul; 11(1):735. PubMed ID: 38971852 [TBL] [Abstract][Full Text] [Related]
8. Effect of photoperiod on developmental fitness in Ophraella communa (Coleoptera: Chrysomelidae). Zhou ZS; Luo M; Guo JY; Chen HS; Wan FH Environ Entomol; 2014 Oct; 43(5):1435-42. PubMed ID: 25203359 [TBL] [Abstract][Full Text] [Related]
9. Genome Assembly of the Ragweed Leaf Beetle: A Step Forward to Better Predict Rapid Evolution of a Weed Biocontrol Agent to Environmental Novelties. Bouchemousse S; Falquet L; Müller-Schärer H Genome Biol Evol; 2020 Jul; 12(7):1167-1173. PubMed ID: 32428241 [TBL] [Abstract][Full Text] [Related]
10. Contemporary evolution of host plant range expansion in an introduced herbivorous beetle Ophraella communa. Fukano Y; Doi H; Thomas CE; Takata M; Koyama S; Satoh T J Evol Biol; 2016 Apr; 29(4):757-65. PubMed ID: 26728888 [TBL] [Abstract][Full Text] [Related]
11. Olfactory co-receptor is involved in host recognition and oviposition in Ophraella communa (Coleoptera: Chrysomelidae). Ma C; Cui S; Bai Q; Tian Z; Zhang Y; Chen G; Gao X; Tian Z; Chen H; Guo J; Wan F; Zhou Z Insect Mol Biol; 2020 Aug; 29(4):381-390. PubMed ID: 32291884 [TBL] [Abstract][Full Text] [Related]
12. Photoperiodic Induction of Adult Diapause in North American Populations of the Convergent Lady Beetle (Coleoptera: Coccinellidae). Obrycki JJ; McCord JS; Mercer NH; White JA Environ Entomol; 2018 Dec; 47(6):1596-1600. PubMed ID: 30165434 [TBL] [Abstract][Full Text] [Related]
13. Differential expression of circadian clock genes in two strains of beetles reveals candidates related to photoperiodic induction of summer diapause. Zhu L; Liu W; Tan QQ; Lei CL; Wang XP Gene; 2017 Mar; 603():9-14. PubMed ID: 27956169 [TBL] [Abstract][Full Text] [Related]
14. Inheritance of photoperiodic control of larval diapause in the Asian corn borer Ostrinia furnacalis (Guenée). Xiao L; He HM; Zhong PS; Fu S; Chen C; Xue FS Bull Entomol Res; 2015 Jun; 105(3):326-34. PubMed ID: 25779483 [TBL] [Abstract][Full Text] [Related]
15. Direct and correlated responses to bi-directional selection on pre-adult development time in Drosophila montana. Kauranen H; Kinnunen J; Hopkins D; Hoikkala A J Insect Physiol; 2019 Jul; 116():77-89. PubMed ID: 31004669 [TBL] [Abstract][Full Text] [Related]
16. Photoperiodic Diapause and the Establishment of Aedes albopictus (Diptera: Culicidae) in North America. Armbruster PA J Med Entomol; 2016 Sep; 53(5):1013-23. PubMed ID: 27354438 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary and functional genetics of insect diapause: a call for greater integration. Ragland GJ; Armbruster PA; Meuti ME Curr Opin Insect Sci; 2019 Dec; 36():74-81. PubMed ID: 31539788 [TBL] [Abstract][Full Text] [Related]
18. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. Paolucci S; van de Zande L; Beukeboom LW J Evol Biol; 2013 Apr; 26(4):705-18. PubMed ID: 23496837 [TBL] [Abstract][Full Text] [Related]
19. Northern Drosophila montana flies show variation both within and between cline populations in the critical day length evoking reproductive diapause. Lankinen P; Tyukmaeva VI; Hoikkala A J Insect Physiol; 2013 Aug; 59(8):745-51. PubMed ID: 23702203 [TBL] [Abstract][Full Text] [Related]
20. Effects of temperature on survival, development, longevity, and fecundity of Ophraella communa (Coleoptera: Chrysomelidae), a potential biological control agent against Ambrosia artemisiifolia (Asterales: Asteraceae). Zhou ZS; Guo JY; Chen HS; Wan FH Environ Entomol; 2010 Jun; 39(3):1021-7. PubMed ID: 20550818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]