BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28177105)

  • 21. Highly activated c-fos expression in specific brain regions (ependyma, circumventricular organs, choroid plexus) of histidine decarboxylase deficient mice in response to formalin-induced acute pain.
    Palkovits M; Deli MA; Gallatz K; Tóth ZE; Buzás E; Falus A
    Neuropharmacology; 2007 Jul; 53(1):101-12. PubMed ID: 17544458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs.
    Gebke E; Müller AR; Jurzak M; Gerstberger R
    Neuroscience; 1998 Jul; 85(2):509-20. PubMed ID: 9622248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A survey of occurrence of about seventeen circumventricular organs in brains of various vertebrates with special reference to lower groups.
    Tsuneki K
    J Hirnforsch; 1986; 27(4):441-70. PubMed ID: 3760554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aquaporin-1 in blood vessels of rat circumventricular organs.
    Wilson AJ; Carati CJ; Gannon BJ; Haberberger R; Chataway TK
    Cell Tissue Res; 2010 Apr; 340(1):159-68. PubMed ID: 20177708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains.
    Mannari T; Morita S; Furube E; Tominaga M; Miyata S
    Glia; 2013 Jun; 61(6):957-71. PubMed ID: 23468425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation of blood-brain barrier function and HT7 protein distribution in chick brain circumventricular organs.
    Albrecht U; Seulberger H; Schwarz H; Risau W
    Brain Res; 1990 Dec; 535(1):49-61. PubMed ID: 2292029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain.
    Nakano Y; Furube E; Morita S; Wanaka A; Nakashima T; Miyata S
    J Neuroimmunol; 2015 Jan; 278():144-58. PubMed ID: 25595264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vasopressin and sensory circumventricular organs.
    Jurzak M; Schmid HA
    Prog Brain Res; 1998; 119():221-45. PubMed ID: 10074791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors.
    Szathmari A; Champier J; Ghersi-Egea JF; Jouvet A; Watrin C; Wierinckx A; Fèvre Montange M
    Neuropathology; 2013 Feb; 33(1):17-29. PubMed ID: 22537279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microglia in Circumventricular Organs: The Pineal Gland Example.
    Muñoz EM
    ASN Neuro; 2022; 14():17590914221135697. PubMed ID: 36317305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estrogen receptor-immunoreactive glia, endothelia, and ependyma in guinea pig preoptic area and median eminence: electron microscopy.
    Langub MC; Watson RE
    Endocrinology; 1992 Jan; 130(1):364-72. PubMed ID: 1727710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ENaC-expressing neurons in the sensory circumventricular organs become c-Fos activated following systemic sodium changes.
    Miller RL; Wang MH; Gray PA; Salkoff LB; Loewy AD
    Am J Physiol Regul Integr Comp Physiol; 2013 Nov; 305(10):R1141-52. PubMed ID: 24049115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Circumventricular Organs in the Mirror of Zebrafish Enhancer-Trap Transgenics.
    García-Lecea M; Gasanov E; Jedrychowska J; Kondrychyn I; Teh C; You MS; Korzh V
    Front Neuroanat; 2017; 11():114. PubMed ID: 29375325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide synthase and vasopressin in rat circumventricular organs. An immunohistochemical study.
    Alm P; Skagerberg G; Nylén A; Larsson B; Andersson KE
    Exp Brain Res; 1997 Oct; 117(1):59-66. PubMed ID: 9386004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of ZO1, vimentin, pan-cadherin and AGTR1 in tanycyte-like cells of the sulcus medianus organum.
    Al-Kaabi M; Hussam F; Al-Marsoummi S; Al-Anbaki A; Al-Salihi A; Al-Aubaidy H
    Biochem Biophys Res Commun; 2018 Jul; 502(2):243-249. PubMed ID: 29803674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relation of neuropeptides to mammalian circumventricular organs.
    Weindl A; Sofroniew MV
    Adv Biochem Psychopharmacol; 1981; 28():303-20. PubMed ID: 7010939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: revealed with the New Marburg cerebrospinal-fluid model in healthy humans.
    Kleine TO
    Cytometry A; 2015 Mar; 87(3):227-43. PubMed ID: 25641944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The circumventricular organs: an atlas of comparative anatomy and vascularization.
    Duvernoy HM; Risold PY
    Brain Res Rev; 2007 Nov; 56(1):119-47. PubMed ID: 17659349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glial functions in the blood-brain communication at the circumventricular organs.
    Miyata S
    Front Neurosci; 2022; 16():991779. PubMed ID: 36278020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localization of immunoreactive prolactin in ependyma and circumventricular organs of rat brain.
    Thompson SA
    Cell Tissue Res; 1982; 225(1):79-93. PubMed ID: 7116429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.