BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28177281)

  • 1. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability.
    Paolella BR; Gibson WJ; Urbanski LM; Alberta JA; Zack TI; Bandopadhayay P; Nichols CA; Agarwalla PK; Brown MS; Lamothe R; Yu Y; Choi PS; Obeng EA; Heckl D; Wei G; Wang B; Tsherniak A; Vazquez F; Weir BA; Root DE; Cowley GS; Buhrlage SJ; Stiles CD; Ebert BL; Hahn WC; Reed R; Beroukhim R
    Elife; 2017 Feb; 6():. PubMed ID: 28177281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Cancer Gene Dependencies with Anthrax-Mediated Delivery of Peptide Nucleic Acids.
    Lu Z; Paolella BR; Truex NL; Loftis AR; Liao X; Rabideau AE; Brown MS; Busanovich J; Beroukhim R; Pentelute BL
    ACS Chem Biol; 2020 Jun; 15(6):1358-1369. PubMed ID: 32348107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allele Loss and Reduced Expression of CYCLOPS Genes is a Characteristic Feature of Chromophobe Renal Cell Carcinoma.
    Ohashi R; Schraml P; Batavia A; Angori S; Simmler P; Rupp N; Ajioka Y; Oliva E; Moch H
    Transl Oncol; 2019 Sep; 12(9):1131-1137. PubMed ID: 31200327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial loss of genes might open therapeutic window.
    Liu B; Abdel-Wahab O
    Elife; 2017 Mar; 6():. PubMed ID: 28304277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jerantinine A induces tumor-specific cell death through modulation of splicing factor 3b subunit 1 (SF3B1).
    Chung FF; Tan PF; Raja VJ; Tan BS; Lim KH; Kam TS; Hii LW; Tan SH; See SJ; Tan YF; Wong LZ; Yam WK; Mai CW; Bradshaw TD; Leong CO
    Sci Rep; 2017 Feb; 7():42504. PubMed ID: 28198434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pan-cancer analysis identifies mutations in
    Liu Z; Zhang J; Sun Y; Perea-Chamblee TE; Manley JL; Rabadan R
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10305-10312. PubMed ID: 32332164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Molecular Mechanism of H3B-8800: A Splicing Modulator Inducing Preferential Lethality in Spliceosome-Mutant Cancers.
    Spinello A; Borišek J; Malcovati L; Magistrato A
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic alterations of SUGP1 mimic mutant-SF3B1 splice pattern in lung adenocarcinoma and other cancers.
    Alsafadi S; Dayot S; Tarin M; Houy A; Bellanger D; Cornella M; Wassef M; Waterfall JJ; Lehnert E; Roman-Roman S; Stern MH; Popova T
    Oncogene; 2021 Jan; 40(1):85-96. PubMed ID: 33057152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer vulnerabilities unveiled by genomic loss.
    Nijhawan D; Zack TI; Ren Y; Strickland MR; Lamothe R; Schumacher SE; Tsherniak A; Besche HC; Rosenbluh J; Shehata S; Cowley GS; Weir BA; Goldberg AL; Mesirov JP; Root DE; Bhatia SN; Beroukhim R; Hahn WC
    Cell; 2012 Aug; 150(4):842-54. PubMed ID: 22901813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic Characterization of SF3B1 Mutation Reveals Its Pleiotropic Effects in Chronic Lymphocytic Leukemia.
    Wang L; Brooks AN; Fan J; Wan Y; Gambe R; Li S; Hergert S; Yin S; Freeman SS; Levin JZ; Fan L; Seiler M; Buonamici S; Smith PG; Chau KF; Cibulskis CL; Zhang W; Rassenti LZ; Ghia EM; Kipps TJ; Fernandes S; Bloch DB; Kotliar D; Landau DA; Shukla SA; Aster JC; Reed R; DeLuca DS; Brown JR; Neuberg D; Getz G; Livak KJ; Meyerson MM; Kharchenko PV; Wu CJ
    Cancer Cell; 2016 Nov; 30(5):750-763. PubMed ID: 27818134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of SF3b1 reveal a dynamic Achilles heel of spliceosome assembly: Implications for cancer-associated abnormalities and drug discovery.
    Maji D; Grossfield A; Kielkopf CL
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194440. PubMed ID: 31707043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the aberrant splicing of DVL2 induced by cancer-associated SF3B1 mutation.
    Zhao B; Hu X; Zhou Y; Shi Y; Qian R; Wan Y
    Biochem Biophys Res Commun; 2021 Mar; 546():21-28. PubMed ID: 33561744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing factor SF3B1 promotes endometrial cancer progression via regulating KSR2 RNA maturation.
    Popli P; Richters MM; Chadchan SB; Kim TH; Tycksen E; Griffith O; Thaker PH; Griffith M; Kommagani R
    Cell Death Dis; 2020 Oct; 11(10):842. PubMed ID: 33040078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in the RNA Splicing Factor SF3B1 Promote Tumorigenesis through MYC Stabilization.
    Liu Z; Yoshimi A; Wang J; Cho H; Chun-Wei Lee S; Ki M; Bitner L; Chu T; Shah H; Liu B; Mato AR; Ruvolo P; Fabbri G; Pasqualucci L; Abdel-Wahab O; Rabadan R
    Cancer Discov; 2020 Jun; 10(6):806-821. PubMed ID: 32188705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer.
    Jiménez-Vacas JM; Herrero-Aguayo V; Gómez-Gómez E; León-González AJ; Sáez-Martínez P; Alors-Pérez E; Fuentes-Fayos AC; Martínez-López A; Sánchez-Sánchez R; González-Serrano T; López-Ruiz DJ; Requena-Tapia MJ; Castaño JP; Gahete MD; Luque RM
    Transl Res; 2019 Oct; 212():89-103. PubMed ID: 31344348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point.
    Darman RB; Seiler M; Agrawal AA; Lim KH; Peng S; Aird D; Bailey SL; Bhavsar EB; Chan B; Colla S; Corson L; Feala J; Fekkes P; Ichikawa K; Keaney GF; Lee L; Kumar P; Kunii K; MacKenzie C; Matijevic M; Mizui Y; Myint K; Park ES; Puyang X; Selvaraj A; Thomas MP; Tsai J; Wang JY; Warmuth M; Yang H; Zhu P; Garcia-Manero G; Furman RR; Yu L; Smith PG; Buonamici S
    Cell Rep; 2015 Nov; 13(5):1033-45. PubMed ID: 26565915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titration of SF3B1 Activity Reveals Distinct Effects on the Transcriptome and Cell Physiology.
    Kim Guisbert KS; Mossiah I; Guisbert E
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation.
    Dalton WB; Helmenstine E; Walsh N; Gondek LP; Kelkar DS; Read A; Natrajan R; Christenson ES; Roman B; Das S; Zhao L; Leone RD; Shinn D; Groginski T; Madugundu AK; Patil A; Zabransky DJ; Medford A; Lee J; Cole AJ; Rosen M; Thakar M; Ambinder A; Donaldson J; DeZern AE; Cravero K; Chu D; Madero-Marroquin R; Pandey A; Hurley PJ; Lauring J; Park BH
    J Clin Invest; 2019 Aug; 129(11):4708-4723. PubMed ID: 31393856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the aberrant splicing of MAP3K7 induced by cancer-associated SF3B1 mutation.
    Li Z; Zhao B; Shi Y; Liang Y; Qian R; Wan Y
    J Biochem; 2021 Sep; 170(1):69-77. PubMed ID: 33751071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast.
    Carrocci TJ; Zoerner DM; Paulson JC; Hoskins AA
    Nucleic Acids Res; 2017 May; 45(8):4837-4852. PubMed ID: 28062854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.