These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 28177302)

  • 1. A fast-degrading thiol-acrylate based hydrogel for cranial regeneration.
    Emmakah AM; Arman HE; Bragg JC; Greene T; Alvarez MB; Childress PJ; Goebel WS; Kacena MA; Lin CC; Chu TM
    Biomed Mater; 2017 Mar; 12(2):025011. PubMed ID: 28177302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoencapsulated-mesenchymal stromal cells in biodegradable thiol-acrylate hydrogels enhance regeneration of craniofacial bone tissue defects.
    Aghali A; Arman HE
    Regen Med; 2020 Sep; 15(9):2115-2127. PubMed ID: 33211632
    [No Abstract]   [Full Text] [Related]  

  • 3. The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts.
    Carles-Carner M; Saleh LS; Bryant SJ
    Biomed Mater; 2018 May; 13(4):045009. PubMed ID: 29611815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture.
    Hao Y; Lin CC
    J Biomed Mater Res A; 2014 Nov; 102(11):3813-27. PubMed ID: 24288169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth.
    Akdemir ZS; Akçakaya H; Kahraman MV; Ceyhan T; Kayaman-Apohan N; Güngör A
    Macromol Biosci; 2008 Sep; 8(9):852-62. PubMed ID: 18504803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of thiol-acrylate hydrogels using a base-catalyzed Michael addition for 3D cell culture applications.
    Khan AH; Cook JK; Wortmann WJ; Kersker ND; Rao A; Pojman JA; Melvin AT
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2294-2307. PubMed ID: 31961056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold.
    Tan F; Xu X; Deng T; Yin M; Zhang X; Wang J
    Biomed Mater; 2012 Oct; 7(5):055009. PubMed ID: 22945346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering.
    Beamish JA; Zhu J; Kottke-Marchant K; Marchant RE
    J Biomed Mater Res A; 2010 Feb; 92(2):441-50. PubMed ID: 19191313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photopolymerizable thiol-acrylate maleiated hyaluronic acid/thiol-terminated poly(ethylene glycol) hydrogels as potential in-situ formable scaffolds.
    Zhang C; Dong Q; Liang K; Zhou D; Yang H; Liu X; Xu W; Zhou Y; Xiao P
    Int J Biol Macromol; 2018 Nov; 119():270-277. PubMed ID: 30055272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone grafting scaffold.
    Li H; Ma T; Zhang M; Zhu J; Liu J; Tan F
    J Mater Sci Mater Med; 2018 Dec; 29(12):187. PubMed ID: 30535592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels.
    Jiang Z; Jiang K; McBride R; Oakey JS
    Biomed Mater; 2018 Oct; 13(6):065012. PubMed ID: 30191888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pyk2 inhibitor incorporated into a PEGDA-gelatin hydrogel promotes osteoblast activity and mineral deposition.
    Posritong S; Flores Chavez R; Chu TG; Bruzzaniti A
    Biomed Mater; 2019 Feb; 14(2):025015. PubMed ID: 30658347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the in vivo degradation mechanism of PEGDA hydrogels.
    Browning MB; Cereceres SN; Luong PT; Cosgriff-Hernandez EM
    J Biomed Mater Res A; 2014 Dec; 102(12):4244-51. PubMed ID: 24464985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.
    Frith JE; Menzies DJ; Cameron AR; Ghosh P; Whitehead DL; Gronthos S; Zannettino AC; Cooper-White JJ
    Biomaterials; 2014 Jan; 35(4):1150-62. PubMed ID: 24215733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic-organic hybrid scaffolds for osteochondral regeneration.
    Munoz-Pinto DJ; McMahon RE; Kanzelberger MA; Jimenez-Vergara AC; Grunlan MA; Hahn MS
    J Biomed Mater Res A; 2010 Jul; 94(1):112-21. PubMed ID: 20128006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.