BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28177357)

  • 1. Technical note: Avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient.
    Masuda Y; Misztal I; Legarra A; Tsuruta S; Lourenco DA; Fragomeni BO; Aguilar I
    J Anim Sci; 2017 Jan; 95(1):49-52. PubMed ID: 28177357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving efficiently large single-step genomic best linear unbiased prediction models.
    Strandén I; Matilainen K; Aamand GP; Mäntysaari EA
    J Anim Breed Genet; 2017 Jun; 134(3):264-274. PubMed ID: 28508482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invited review: efficient computation strategies in genomic selection.
    Misztal I; Legarra A
    Animal; 2017 May; 11(5):731-736. PubMed ID: 27869042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of genomic recursions in single-step genomic best linear unbiased predictor for US Holsteins with a large number of genotyped animals.
    Masuda Y; Misztal I; Tsuruta S; Legarra A; Aguilar I; Lourenco DAL; Fragomeni BO; Lawlor TJ
    J Dairy Sci; 2016 Mar; 99(3):1968-1974. PubMed ID: 26805987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deflated preconditioned conjugate gradient method for solving single-step BLUP models efficiently.
    Vandenplas J; Eding H; Calus MPL; Vuik C
    Genet Sel Evol; 2018 Nov; 50(1):51. PubMed ID: 30390656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient approximation of reliabilities for single-step genomic best linear unbiased predictor models with the Algorithm for Proven and Young.
    Bermann M; Lourenco D; Misztal I
    J Anim Sci; 2022 Jan; 100(1):. PubMed ID: 34877603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic predictions based on animal models using genotype imputation on a national scale in Norwegian Red cattle.
    Meuwissen TH; Svendsen M; Solberg T; Ødegård J
    Genet Sel Evol; 2015 Oct; 47():79. PubMed ID: 26464226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient single-step genomic evaluation for a multibreed beef cattle population having many genotyped animals.
    Mäntysaari EA; Evans RD; Strandén I
    J Anim Sci; 2017 Nov; 95(11):4728-4737. PubMed ID: 29293736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using recursion to compute the inverse of the genomic relationship matrix.
    Misztal I; Legarra A; Aguilar I
    J Dairy Sci; 2014; 97(6):3943-52. PubMed ID: 24679933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient exact method to obtain GBLUP and single-step GBLUP when the genomic relationship matrix is singular.
    Fernando RL; Cheng H; Garrick DJ
    Genet Sel Evol; 2016 Oct; 48(1):80. PubMed ID: 27788669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction.
    Legarra A; Ducrocq V
    J Dairy Sci; 2012 Aug; 95(8):4629-45. PubMed ID: 22818478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational strategies for the preconditioned conjugate gradient method applied to ssSNPBLUP, with an application to a multivariate maternal model.
    Vandenplas J; Eding H; Bosmans M; Calus MPL
    Genet Sel Evol; 2020 May; 52(1):24. PubMed ID: 32404053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects.
    Taskinen M; Mäntysaari EA; Strandén I
    Genet Sel Evol; 2017 Mar; 49(1):36. PubMed ID: 28359261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and accurate computation of base generation allele frequencies.
    Aldridge MN; Vandenplas J; Calus MPL
    J Dairy Sci; 2019 Feb; 102(2):1364-1373. PubMed ID: 30471906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single-step genomic model with direct estimation of marker effects.
    Liu Z; Goddard ME; Reinhardt F; Reents R
    J Dairy Sci; 2014 Sep; 97(9):5833-50. PubMed ID: 25022678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is single-step genomic REML with the algorithm for proven and young more computationally efficient when less generations of data are present?
    Junqueira VS; Lourenco D; Masuda Y; Cardoso FF; Lopes PS; Silva FFE; Misztal I
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35289906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of the reduced animal model to single-step methods.
    Nilforooshan MA
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36069946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical implementation of genetic groups in single-step genomic evaluations with Woodbury matrix identity-based genomic relationship inverse.
    Koivula M; Strandén I; Aamand GP; Mäntysaari EA
    J Dairy Sci; 2021 Sep; 104(9):10049-10058. PubMed ID: 34099294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90.
    Lourenco D; Legarra A; Tsuruta S; Masuda Y; Aguilar I; Misztal I
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving large test-day models by iteration on data and preconditioned conjugate gradient.
    Lidauer M; Strandén I; Mäntysaari EA; Pösö J; Kettunen A
    J Dairy Sci; 1999 Dec; 82(12):2788-96. PubMed ID: 10629827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.