BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28177409)

  • 1. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?
    Jarvie HP; Johnson LT; Sharpley AN; Smith DR; Baker DB; Bruulsema TW; Confesor R
    J Environ Qual; 2017 Jan; 46(1):123-132. PubMed ID: 28177409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Patterns in Lake Erie Phosphorus and Chlorophyll
    Rowland FE; Stow CA; Johengen TH; Burtner AM; Palladino D; Gossiaux DC; Davis TW; Johnson LT; Ruberg S
    Environ Sci Technol; 2020 Jan; 54(2):835-841. PubMed ID: 31859490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Impact of Legacy P and Agricultural Conservation Practices on Nutrient Loads from the Maumee River Watershed.
    Muenich RL; Kalcic M; Scavia D
    Environ Sci Technol; 2016 Aug; 50(15):8146-54. PubMed ID: 27322563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating causes of trends in long-term dissolved reactive phosphorus loads to Lake Erie.
    Daloğlu I; Cho KH; Scavia D
    Environ Sci Technol; 2012 Oct; 46(19):10660-6. PubMed ID: 22962949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engaging Stakeholders To Define Feasible and Desirable Agricultural Conservation in Western Lake Erie Watersheds.
    Kalcic MM; Kirchhoff C; Bosch N; Muenich RL; Murray M; Griffith Gardner J; Scavia D
    Environ Sci Technol; 2016 Aug; 50(15):8135-45. PubMed ID: 27336855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lake Nutrient Responses to Integrated Conservation Practices in an Agricultural Watershed.
    Lizotte RE; Yasarer LM; Locke MA; Bingner RL; Knight SS
    J Environ Qual; 2017 Mar; 46(2):330-338. PubMed ID: 28380566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climatic and agricultural contributions to changing loads in two watersheds in Ohio.
    Moog DB; Whiting PJ
    J Environ Qual; 2002; 31(1):83-9. PubMed ID: 11837448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term and seasonal trend decomposition of Maumee River nutrient inputs to western Lake Erie.
    Stow CA; Cha Y; Johnson LT; Confesor R; Richards RP
    Environ Sci Technol; 2015 Mar; 49(6):3392-400. PubMed ID: 25679045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate Change and Nutrient Loading in the Western Lake Erie Basin: Warming Can Counteract a Wetter Future.
    Kalcic MM; Muenich RL; Basile S; Steiner AL; Kirchhoff C; Scavia D
    Environ Sci Technol; 2019 Jul; 53(13):7543-7550. PubMed ID: 31244082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT).
    Guo T; Confesor R; Saleh A; King K
    Sci Total Environ; 2020 Jul; 726():138485. PubMed ID: 32315850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climatic and agricultural factors in nutrient exports from two watersheds in Ohio.
    Moog DB; Whiting PJ
    J Environ Qual; 2002; 31(1):72-83. PubMed ID: 11837447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus budgets and riverine phosphorus export in northwestern Ohio watersheds.
    Baker DB; Richards RP
    J Environ Qual; 2002; 31(1):96-108. PubMed ID: 11837450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie.
    Kast JB; Apostel AM; Kalcic MM; Muenich RL; Dagnew A; Long CM; Evenson G; Martin JF
    J Environ Manage; 2021 Feb; 279():111803. PubMed ID: 33341725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating water quality sensitivity to climate variability and its influencing factors in four Lake Erie watersheds.
    Wang R; Ma Y; Zhao G; Zhou Y; Shehab I; Burton A
    J Environ Manage; 2023 Jan; 325(Pt A):116449. PubMed ID: 36252329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends in agriculture in the LEASEQ watersheds, 1975-1995. Lake Erie Agricultural Systems for Environmental Quality.
    Richards RP; Baker DB; Eckert DJ
    J Environ Qual; 2002; 31(1):17-24. PubMed ID: 11837420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Less Agricultural Phosphorus Applied in 2019 Led to Less Dissolved Phosphorus Transported to Lake Erie.
    Guo T; Johnson LT; LaBarge GA; Penn CJ; Stumpf RP; Baker DB; Shao G
    Environ Sci Technol; 2021 Jan; 55(1):283-291. PubMed ID: 33283499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin.
    Baker DB; Johnson LT; Confesor RB; Crumrine JP
    J Environ Qual; 2017 Nov; 46(6):1287-1295. PubMed ID: 29293833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Lake Erie Agricultural Systems for Environmental Quality project: an introduction.
    Richards RP; Calhoun FG; Matisoff G
    J Environ Qual; 2002; 31(1):6-16. PubMed ID: 11837445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP; Neal C; Withers PJ
    Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.